Question #319535

Let (X,Y) be a two-dimensional continuous random variable with joint P.d.f







๐‘“๐‘‹๐‘Œ







(๐‘ฅ,๐‘ฆ) = {







2 , 0 < ๐‘ฅ < ๐‘ฆ < 1







0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’







Find the marginal distribution for X and Y ?

1
Expert's answer
2022-03-29T08:20:39-0400

fX(x)=โˆซf(x,y)dy=โˆซx12dy=2(1โˆ’x),xโˆˆ[0,1]fY(y)=โˆซf(x,y)dx=โˆซ0y2dx=2y,yโˆˆ[0,1]f_X\left( x \right) =\int{f\left( x,y \right) dy}=\int_x^1{2dy}=2\left( 1-x \right) ,x\in \left[ 0,1 \right] \\f_Y\left( y \right) =\int{f\left( x,y \right) dx}=\int_0^y{2dx}=2y,y\in \left[ 0,1 \right]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS