Let (X,Y) be a two-dimensional continuous random variable with joint P.d.f
๐๐๐
(๐ฅ,๐ฆ) = {
2 , 0 < ๐ฅ < ๐ฆ < 1
0 , ๐๐กโ๐๐๐ค๐๐ ๐
Find the marginal distribution for X and Y ?
fX(x)=โซf(x,y)dy=โซx12dy=2(1โx),xโ[0,1]fY(y)=โซf(x,y)dx=โซ0y2dx=2y,yโ[0,1]f_X\left( x \right) =\int{f\left( x,y \right) dy}=\int_x^1{2dy}=2\left( 1-x \right) ,x\in \left[ 0,1 \right] \\f_Y\left( y \right) =\int{f\left( x,y \right) dx}=\int_0^y{2dx}=2y,y\in \left[ 0,1 \right]fXโ(x)=โซf(x,y)dy=โซx1โ2dy=2(1โx),xโ[0,1]fYโ(y)=โซf(x,y)dx=โซ0yโ2dx=2y,yโ[0,1]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments