Consider independent random variables Zi ∼ N(0, 1), i = 1, …, 16, and let Z be the sample mean. Find:
a) P[Zbar <1/ 2].
b) P[Z1 − Z2 < 2].
c)P[Z1 + Z2 <2].
"a:\\\\\\bar{Z}\\sim N\\left( 0,\\frac{1}{16} \\right) \\\\P\\left( \\bar{Z}<\\frac{1}{2} \\right) =P\\left( 4\\bar{Z}<2 \\right) =\\varPhi \\left( 2 \\right) =0.9772\\\\b:\\\\Z_1-Z_2\\sim N\\left( 0,1^2+1^2 \\right) =N\\left( 0,2 \\right) \\\\P\\left( Z_1-Z_2<2 \\right) =P\\left( \\frac{Z_1-Z_2}{\\sqrt{2}}<\\sqrt{2} \\right) =\\varPhi \\left( \\sqrt{2} \\right) =0.9214\\\\c:\\\\Z_1+Z_2\\sim N\\left( 0,1^2+1^2 \\right) =N\\left( 0,2 \\right) \\sim Z_1-Z_2\\\\P\\left( Z_1+Z_2<2 \\right) =P\\left( Z_1-Z_2<2 \\right) =0.9214"
Comments
Leave a comment