Question #318250

How many different samples of size n = 3 can be selected from a population with the following sizes?

1.) N = 4

2.) N = 8

3.) N = 20

4.) N = 50



1
Expert's answer
2022-03-28T13:20:52-0400

The number of possible samples which can be selected without replacement is

(Nn)=N!n!(Nn)!.\begin{pmatrix} N \\ n \end{pmatrix}=\cfrac{N! } {n! \cdot(N-n)! }.


1.) (43)=4!3!1!=4.1.) \ \begin{pmatrix} 4 \\ 3 \end{pmatrix}=\cfrac{4! } {3! \cdot1! }=4.

2.) (83)=8!3!5!==67823=56.2.) \ \begin{pmatrix} 8\\ 3 \end{pmatrix}=\cfrac{8! } {3! \cdot5! }=\\ =\cfrac{6\cdot7\cdot8}{2\cdot3}=56.

3.) (203)=20!3!17!==18192023=1140.3.) \ \begin{pmatrix} 20\\ 3 \end{pmatrix}=\cfrac{20! } {3! \cdot17! }=\\ =\cfrac{18\cdot19\cdot20}{2\cdot3}=1140.

4.) (503)=50!3!47!==48495023=19600.4.) \ \begin{pmatrix} 50\\ 3 \end{pmatrix}=\cfrac{50! } {3! \cdot47! }=\\ =\cfrac{48\cdot49\cdot50}{2\cdot3}=19600.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS