For each fixed λ > 0, let X have a Poisson distribution with parameter λ. Suppose λ
itself is a random variable with the gamma distribution
f(λ) =
1
Γ(n)
λ
n−1
e
−λ
, λ ≥ 0
0, λ < 0
where n is a fixed positive constant. Show that
P(X = k) = Γ(k + n)
Γ(n)Γ(k + 1)
1
2
k+n
, k = 0, 1, 2
"P\\left( X=k \\right) =\\int_0^{+\\infty}{P\\left( X=k|\\lambda =t \\right) f_{\\lambda}\\left( t \\right) dt}=\\\\=\\int_0^{+\\infty}{\\frac{t^ke^{-t}}{k!}\\frac{t^{n-1}e^{-t}}{\\varGamma \\left( n \\right)}dt}=\\\\=\\frac{1}{k!\\varGamma \\left( n \\right)}\\int_0^{+\\infty}{t^{k+n-1}e^{-2t}dt}=\\left[ 2t=x \\right] =\\\\=\\frac{1}{k!\\varGamma \\left( n \\right)}\\int_0^{+\\infty}{\\frac{1}{2^{k+n}}x^{k+n-1}e^{-x}dx}=\\frac{\\varGamma \\left( k+n \\right)}{\\varGamma \\left( k+1 \\right) \\varGamma \\left( n \\right) 2^{k+n}}"
Comments
Leave a comment