Let X and Y be independent random variables each having a geometric probability
mass function with parameter 1/2 Let Z = Y - X and M = min(X, Y) . Find the joint
p.m.f of M and Z P(M=m , Z=z) , for integers z and m > 0
"P\\left( X=k \\right) =P\\left( Y=k \\right) =\\frac{1}{2}\\cdot \\left( \\frac{1}{2} \\right) ^{k-1}=\\frac{1}{2^k}\\\\P\\left( M=m,Z=z \\right) =P\\left( \\min \\left( X,Y \\right) =m,X-Y=z \\right) \\\\z\\geqslant 0:\\\\P\\left( M=m,Z=z \\right) =P\\left( Y=m,X=m+z \\right) =\\frac{1}{2^m}\\cdot \\frac{1}{2^{m+z}}=\\frac{1}{2^{2m+z}}\\\\z<0:\\\\P\\left( M=m,Z=z \\right) =P\\left( X=m,Y=m-z \\right) =\\frac{1}{2^m}\\cdot \\frac{1}{2^{m-z}}=\\frac{1}{2^{2m-z}}\\\\In\\,\\,general:\\\\P\\left( M=m,Z=z \\right) =\\frac{1}{2^{2m+\\left| z \\right|}}"
Comments
Leave a comment