find the variance and standard deviation of the probability distribution of the random variable W if P{W = w} = {w+1}/20 for W = {1, 2, 3, 4, 5}
"V(W)=M(W^2)-M^2(W)"
"P(W=1)={\\frac 2 {20}}"
"P(W=2)={\\frac 3 {20}}"
"P(W=3)={\\frac 4 {20}}"
"P(W=4)={\\frac 5 {20}}"
"P(W=5)={\\frac 6 {20}}"
"M(W)={\\frac 2 {20}}*1+{\\frac 3 {20}}*2+{\\frac 4 {20}}*3+{\\frac 5 {20}}*4+{\\frac 6 {20}}*5={\\frac {70}{20}}=3.5\\implies M^2(W)=12.25"
"M(W^2)={\\frac 2 {20}}*1^2+{\\frac 3 {20}}*2^2+{\\frac 4 {20}}*3^2+{\\frac 5 {20}}*4^2+{\\frac 6 {20}}*5^2={\\frac {280}{20}}=14"
So, "V(W)=14-12.25=1.75"
"\\sigma(W)=\\sqrt{V(W)}=\\sqrt{1.75}\\approx1.323"
Comments
Leave a comment