find the variance and standard deviation of the probability distribution of the random variable W if P{W = w} = {w+1}/20 for W = {1, 2, 3, 4, 5}
V(W)=M(W2)−M2(W)V(W)=M(W^2)-M^2(W)V(W)=M(W2)−M2(W)
P(W=1)=220P(W=1)={\frac 2 {20}}P(W=1)=202
P(W=2)=320P(W=2)={\frac 3 {20}}P(W=2)=203
P(W=3)=420P(W=3)={\frac 4 {20}}P(W=3)=204
P(W=4)=520P(W=4)={\frac 5 {20}}P(W=4)=205
P(W=5)=620P(W=5)={\frac 6 {20}}P(W=5)=206
M(W)=220∗1+320∗2+420∗3+520∗4+620∗5=7020=3.5 ⟹ M2(W)=12.25M(W)={\frac 2 {20}}*1+{\frac 3 {20}}*2+{\frac 4 {20}}*3+{\frac 5 {20}}*4+{\frac 6 {20}}*5={\frac {70}{20}}=3.5\implies M^2(W)=12.25M(W)=202∗1+203∗2+204∗3+205∗4+206∗5=2070=3.5⟹M2(W)=12.25
M(W2)=220∗12+320∗22+420∗32+520∗42+620∗52=28020=14M(W^2)={\frac 2 {20}}*1^2+{\frac 3 {20}}*2^2+{\frac 4 {20}}*3^2+{\frac 5 {20}}*4^2+{\frac 6 {20}}*5^2={\frac {280}{20}}=14M(W2)=202∗12+203∗22+204∗32+205∗42+206∗52=20280=14
So, V(W)=14−12.25=1.75V(W)=14-12.25=1.75V(W)=14−12.25=1.75
σ(W)=V(W)=1.75≈1.323\sigma(W)=\sqrt{V(W)}=\sqrt{1.75}\approx1.323σ(W)=V(W)=1.75≈1.323
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments