Question #315383

find the variance and standard deviation of the probability distribution of the random variable W if P{W = w} = {w+1}/20 for W = {1, 2, 3, 4, 5}


1
Expert's answer
2022-03-22T04:23:41-0400

V(W)=M(W2)M2(W)V(W)=M(W^2)-M^2(W)

P(W=1)=220P(W=1)={\frac 2 {20}}

P(W=2)=320P(W=2)={\frac 3 {20}}

P(W=3)=420P(W=3)={\frac 4 {20}}

P(W=4)=520P(W=4)={\frac 5 {20}}

P(W=5)=620P(W=5)={\frac 6 {20}}

M(W)=2201+3202+4203+5204+6205=7020=3.5    M2(W)=12.25M(W)={\frac 2 {20}}*1+{\frac 3 {20}}*2+{\frac 4 {20}}*3+{\frac 5 {20}}*4+{\frac 6 {20}}*5={\frac {70}{20}}=3.5\implies M^2(W)=12.25

M(W2)=22012+32022+42032+52042+62052=28020=14M(W^2)={\frac 2 {20}}*1^2+{\frac 3 {20}}*2^2+{\frac 4 {20}}*3^2+{\frac 5 {20}}*4^2+{\frac 6 {20}}*5^2={\frac {280}{20}}=14

So, V(W)=1412.25=1.75V(W)=14-12.25=1.75

σ(W)=V(W)=1.751.323\sigma(W)=\sqrt{V(W)}=\sqrt{1.75}\approx1.323


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS