Suppose that a random variable X has a Poisson distribution with parameter λ. The
parameter λ itself is a random variable with the exponential distribution with mean 1
c ,
where c is a constant. Show that
P(X = k) =
c
(c + 1)k+1
P(X=k)=∫0+∞P(X=k∣λ=t)fλ(t)dt=∫0+∞tke−tk!ce−ctdt==ck!∫0+∞tke−(c+1)tdt=[(c+1)t=x]=ck!(c+1)k+1∫0+∞xke−xdx==ck!(c+1)k+1Γ(k+1)=c(c+1)k+1P\left( X=k \right) =\int_0^{+\infty}{P\left( X=k|\lambda =t \right) f_{\lambda}\left( t \right) dt}=\int_0^{+\infty}{\frac{t^ke^{-t}}{k!}ce^{-ct}dt}=\\=\frac{c}{k!}\int_0^{+\infty}{t^ke^{-\left( c+1 \right) t}dt}=\left[ \left( c+1 \right) t=x \right] =\frac{c}{k!\left( c+1 \right) ^{k+1}}\int_0^{+\infty}{x^ke^{-x}dx}=\\=\frac{c}{k!\left( c+1 \right) ^{k+1}}\varGamma \left( k+1 \right) =\frac{c}{\left( c+1 \right) ^{k+1}}P(X=k)=∫0+∞P(X=k∣λ=t)fλ(t)dt=∫0+∞k!tke−tce−ctdt==k!c∫0+∞tke−(c+1)tdt=[(c+1)t=x]=k!(c+1)k+1c∫0+∞xke−xdx==k!(c+1)k+1cΓ(k+1)=(c+1)k+1c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments