A3. Let (Ω, F, P) be a probability space and let H ∈ F with P(H) > 0. For any arbitrary
A ∈ F, let
PH(A) =
P(A ∩ H)
P(H)
Show that (Ω.F, PH) is a probability space.
We need to show that $PH$ is a probability on the sigma-algebra F. Indeed:
"PH\\left( A \\right) =\\frac{P\\left( A\\cap H \\right)}{P\\left( H \\right)}\\geqslant 0\\\\PH\\left( \\varOmega \\right) =\\frac{P\\left( \\varOmega \\cap H \\right)}{P\\left( H \\right)}=\\frac{P\\left( H \\right)}{P\\left( H \\right)}=1\\\\A_i\\cap A_j=\\emptyset :PH\\left( \\sum{A_i} \\right) =\\frac{P\\left( \\sum{A_i}\\cap H \\right)}{P\\left( H \\right)}=\\frac{P\\left( \\sum{\\left( A_i\\cap H \\right)} \\right)}{P\\left( H \\right)}=\\\\=\\frac{\\sum{P\\left( A_i\\cap H \\right)}}{P\\left( H \\right)}=\\sum{\\frac{P\\left( A_i\\cap H \\right)}{P\\left( H \\right)}}=\\sum{PH\\left( A_i \\right)}"
Comments
Leave a comment