Samples of 3 cards are drawn from a population of five cards numbered from 1-5.
1. How many are the possible outcomes?
2. What are the possible means?
3. What is the probability of getting 4 as a mean?
4. What is the probability of getting 2 as a mean?
5. What is the probability of getting 3.33 as a mean?
1. There are "C_{5}^{3}=10" possible outcomes.
2. The outcomes are
"\\left( 1,2,3 \\right) ,\\bar{x}=2\\\\\\left( 1,2,4 \\right) ,\\bar{x}=\\frac{7}{3}\\\\\\left( 1,2,5 \\right) ,\\bar{x}=\\frac{8}{3}\\\\\\left( 1,3,4 \\right) ,\\bar{x}=\\frac{8}{3}\\\\\\left( 1,3,5 \\right) ,\\bar{x}=3\\\\\\left( 1,4,5 \\right) ,\\bar{x}=\\frac{10}{3}\\\\\\left( 2,3,4 \\right) ,\\bar{x}=3\\\\\\left( 2,3,5 \\right) ,\\bar{x}=\\frac{10}{3}\\\\\\left( 2,4,5 \\right) ,\\bar{x}=\\frac{11}{3}\\\\\\left( 3,4,5 \\right) ,\\bar{x}=4"
The possible means are "2,\\frac{7}{3},\\frac{8}{3},3,\\frac{10}{3},\\frac{11}{3},4"
"3:\\\\P\\left( \\bar{x}=4 \\right) =P\\left( \\left( 3,4,5 \\right) \\right) =\\frac{1}{10}\\\\4:\\\\P\\left( \\bar{x}=2 \\right) =P\\left( \\left( 1,2,3 \\right) \\right) =\\frac{1}{10}\\\\5:\\\\P\\left( \\bar{x}=3.33 \\right) =P\\left( \\bar{x}=\\frac{10}{3} \\right) =P\\left( \\left( 1,4,5 \\right) \\right) +P\\left( \\left( 2,3,5 \\right) \\right) =\\frac{2}{10}=\\frac{1}{5}\\\\"
Comments
Leave a comment