There are 7 boys and 5 girls in a youngsters’ club. A committee of 3 boys and 2 girls is to be chosen. How many different possibilities are there?
"N=\\begin{pmatrix} 7 \\\\ 3\\end{pmatrix}\\cdot\\begin{pmatrix} 5 \\\\ 2\\end{pmatrix}=\\\\\n=\\cfrac{7! } {3! \\cdot(7-3)! } \\cdot\n\\cfrac{5! } {2! \\cdot(5-2)! }=\\\\\n=\\cfrac{5\\cdot6\\cdot7}{2\\cdot3}\\cdot\\cfrac{4\\cdot5}{2}=\\\\=350."
Comments
Leave a comment