There are 7 boys and 5 girls in a youngsters’ club. A committee of 3 boys and 2 girls is to be chosen. How many different possibilities are there?
N=(73)⋅(52)==7!3!⋅(7−3)!⋅5!2!⋅(5−2)!==5⋅6⋅72⋅3⋅4⋅52==350.N=\begin{pmatrix} 7 \\ 3\end{pmatrix}\cdot\begin{pmatrix} 5 \\ 2\end{pmatrix}=\\ =\cfrac{7! } {3! \cdot(7-3)! } \cdot \cfrac{5! } {2! \cdot(5-2)! }=\\ =\cfrac{5\cdot6\cdot7}{2\cdot3}\cdot\cfrac{4\cdot5}{2}=\\=350.N=(73)⋅(52)==3!⋅(7−3)!7!⋅2!⋅(5−2)!5!==2⋅35⋅6⋅7⋅24⋅5==350.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments