μ = 1.47 + 1.58 + 1.67 + 1.69 + 1.51 / 5 = 1.58 \mu=1.47+1.58+1.67+1.69+1.51/5=1.58 μ = 1.47 + 1.58 + 1.67 + 1.69 + 1.51/5 = 1.58
2.μ ( X 2 ) = 2.16 + 2.5 + 2.79 + 2.86 + 2.28 = 2.518 \mu(X^2)=2.16+2.5+2.79+2.86+2.28=2.518 μ ( X 2 ) = 2.16 + 2.5 + 2.79 + 2.86 + 2.28 = 2.518
μ ( X 2 ) = 1.59 \sqrt{\mu(X^2)}=1.59 μ ( X 2 ) = 1.59
3. μ < μ ( X 2 ) \mu<\mu(X^2) μ < μ ( X 2 )
This is due to rounding error.
4.VarianceS 2 = ( 1.58 − 1.47 ) 2 + ( 1.58 − 1.58 ) 2 + ( 1.58 − 1.67 ) 2 + ( 1.58 − 1.69 ) 2 + ( 1.58 − 1.51 ) 2 4 = 0.0121 + 0 + 0.0081 + 0.0121 + 0.0049 4 = 0.096 S^2=\sqrt{\frac{(1.58-1.47)^2+(1.58-1.58)^2+(1.58-1.67)^2+(1.58-1.69)^2+(1.58-1.51)^2}{4}}=\sqrt{\frac{0.0121+0+0.0081+0.0121+0.0049}{4}}=0.096 S 2 = 4 ( 1.58 − 1.47 ) 2 + ( 1.58 − 1.58 ) 2 + ( 1.58 − 1.67 ) 2 + ( 1.58 − 1.69 ) 2 + ( 1.58 − 1.51 ) 2 = 4 0.0121 + 0 + 0.0081 + 0.0121 + 0.0049 = 0.096
Deviation
σ = S 2 = 0.31 \sigma=\sqrt{S^2}=0.31 σ = S 2 = 0.31
5.S 2 ( o r ) = ( 2.52 − 2.16 ) 2 + ( 2.52 − 2.5 ) 2 + ( 2.52 − 2.79 ) 2 + ( 2.52 − 2.86 ) 2 + ( 2.52 − 2.28 ) 2 4 = 0.1296 + 0.0004 + 0.0729 + 0.1156 + 0.0576 4 = 0.31 S^2(or)=\sqrt{\frac{(2.52-2.16)^2+(2.52-2.5)^2+(2.52-2.79)^2+(2.52-2.86)^2+(2.52-2.28)^2}{4}}=\sqrt{\frac{0.1296+0.0004+0.0729+0.1156+0.0576}{4}}=0.31 S 2 ( or ) = 4 ( 2.52 − 2.16 ) 2 + ( 2.52 − 2.5 ) 2 + ( 2.52 − 2.79 ) 2 + ( 2.52 − 2.86 ) 2 + ( 2.52 − 2.28 ) 2 = 4 0.1296 + 0.0004 + 0.0729 + 0.1156 + 0.0576 = 0.31
σ ( a r ) = o r = 0.56 \sigma(ar)=\sqrt{or}=0.56 σ ( a r ) = or = 0.56
6. ar is a square root of a, as x and x2 .
0.31 = 0.56 \sqrt{0.31}=0.56 0.31 = 0.56
Comments