The ages of participants in a drama workshop are normally distributed with mean 18.5 years and standard deviation 2.5 years. What is the probability that the age of a random participant is (a) more than 20 years, (b) between 16 and 18 years?
We have a normal distribution, "\\mu=18.5, \\sigma=2.5."
Let's convert it to the standard normal distribution, "z=\\cfrac{x-\\mu}{\\sigma}."
(a) "z=\\cfrac{20-18.5}{2.5} =0.6;"
"P(X>20)=P(Z>0.6)=1-P(Z<0.6)="
"=1-0.7257=0.2743" (from z-table).
(b) "z_1=\\cfrac{16-18.5}{2.5}=-1, z_2=\\cfrac{18-18.5}{2.5}=-0.2,"
"P(16<X<18)=P(-1<Z<-0.2)=P(Z<-0.2)-P(Z<-1)="
"=0.4207-0.1587=0.2620" (from z-table).
Comments
Leave a comment