Answer to Question #311396 in Statistics and Probability for Steve

Question #311396

A fast-food chain decided to carry out an experiment to assess the influence of advertising expenditure on sales. Different relative changes in advertising expenditure, compared to the previous year, were made in eight regions of the country, and resulting changes in sales levels were observed. The accompanying table shows the results


Increase in advertising expenditure (%) 0 4 14 10 9 8 6 1


Increase in sales (%) 2.4 7.2 10.3 9.1 10.2 4.1 7.6 3.5 


a. Estimate the least-squares the linear regression of the increase in sales on increase in advertising expenditure

b. Find a 90% confidence interval for the slope of the population regression line


1
Expert's answer
2022-03-18T01:17:20-0400

We have

"a:\\\\X=\\left[ \\begin{array}{c} \\begin{matrix} 1& 0\\\\ 1& 4\\\\ 1& 14\\\\ 1& 10\\\\\\end{matrix}\\\\ \\begin{matrix} 1& 9\\\\ 1& 8\\\\ 1& 6\\\\ 1& 1\\\\\\end{matrix}\\\\\\end{array} \\right] \\\\y=\\left[ \\begin{array}{c} 2.4\\\\ 7.2\\\\ 10.3\\\\ 9.1\\\\ 10.2\\\\ 4.1\\\\ 7.6\\\\ 3.5\\\\\\end{array} \\right] \\\\\\left[ \\begin{array}{c} a\\\\ b\\\\\\end{array} \\right] =\\left( X^TX \\right) ^{-1}X^Ty=\\\\=\\left( \\left[ \\begin{matrix} 1& 1& 1& 1& 1& 1& 1& 1\\\\ 0& 4& 14& 10& 9& 8& 6& 1\\\\\\end{matrix} \\right] \\left[ \\begin{array}{c} \\begin{matrix} 1& 0\\\\ 1& 4\\\\ 1& 14\\\\ 1& 10\\\\\\end{matrix}\\\\ \\begin{matrix} 1& 9\\\\ 1& 8\\\\ 1& 6\\\\ 1& 1\\\\\\end{matrix}\\\\\\end{array} \\right] \\right) ^{-1}\\left[ \\begin{matrix} 1& 1& 1& 1& 1& 1& 1& 1\\\\ 0& 4& 14& 10& 9& 8& 6& 1\\\\\\end{matrix} \\right] \\left[ \\begin{array}{c} 2.4\\\\ 7.2\\\\ 10.3\\\\ 9.1\\\\ 10.2\\\\ 4.1\\\\ 7.6\\\\ 3.5\\\\\\end{array} \\right] =\\\\=\\left[ \\begin{matrix} 8& 52\\\\ 52& 494\\\\\\end{matrix} \\right] ^{-1}\\left[ \\begin{array}{c} 54.4\\\\ 437.7\\\\\\end{array} \\right] =\\frac{1}{8\\cdot 494-52^2}\\left[ \\begin{matrix} 494& -52\\\\ -52& 8\\\\\\end{matrix} \\right] \\left[ \\begin{array}{c} 54.4\\\\ 437.7\\\\\\end{array} \\right] =\\frac{1}{1248}\\left[ \\begin{array}{c} 4113.2\\\\ 672.8\\\\\\end{array} \\right] =\\\\=\\left[ \\begin{array}{c} 3.29583\\\\ 0.539103\\\\\\end{array} \\right] \\\\y'=3.29583+0.539103x"

b:

The slope is

"\\beta =0.539103"

Next,



from which

"s_{\\beta}=\\sqrt{\\frac{\\sum{\\left( y_i-y_i' \\right) ^2}}{\\left( n-2 \\right) \\sum{\\left( x_i-\\bar{x} \\right) ^2}}}=\\sqrt{\\frac{22.10147}{\\left( 8-2 \\right) \\cdot 156}}=0.153664"

The confidence interval is

"\\left( \\beta -t_{1-\\alpha \/2,n-2}s_{\\beta},\\beta +t_{1-\\alpha \/2,n-2}s_{\\beta} \\right) =\\\\=\\left( 0.53910-1.94318\\cdot 0.15366,0.53910+1.94318\\cdot 0.15366 \\right) =\\\\=\\left( 0.240511,0.837689 \\right)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog