Find the variance and standard deviation of the probability distribution of the random variable X, which can take only the values 3,5, and 7, given that P (3) = (7)/(30),P(5) = (1)/(3),P(7) = (13)/(30)
Mean: "E(X)=3*{\\frac 7 {30}}+5*{\\frac 1 3}+7 * {\\frac {13} {30}}={\\frac {162} {30}}=5.4"
Variance: "V(X)=E(X^2)-E^2(X)=3^2*{\\frac 7 {30}}+5^2*{\\frac 1 3}+7^2*{\\frac {13} {30}}-5.4^2={\\frac {950} {30}}-{\\frac {729} {25}}={\\frac {1880} {750}}={\\frac {940} {375}}\\approx 2.51"
Standard deviation: "{\\sigma}(X)=\\sqrt{2.51} \\approx1.58"
Comments
Leave a comment