Answer to Question #309887 in Statistics and Probability for badshah

Question #309887

Two fair cubical dice are thrown: one is red and one is blue. The random variable

M represents the score on the red die minus the score on the blue die.

a. Find the distribution of M.

b. Write down E(M).

c. Find Var (M)


1
Expert's answer
2022-03-14T17:12:35-0400

a) M={-5,-4,-3,-2,-1,0,1,2,3,4,5}

P(M=5)=P(M=5)=136P(M=-5)=P(M=5)={\frac 1 {36}}

P(M=4)=P(M=4)=236=118P(M=-4)=P(M=4)={\frac 2 {36}}={\frac 1 {18}}

P(M=3)=P(M=3)=336=112P(M=-3)=P(M=3)={\frac 3 {36}}={\frac 1 {12}}

P(M=2)=P(M=2)=436=19P(M=-2)=P(M=2)={\frac 4 {36}}={\frac 1 9}

P(M=1)=P(M=1)=536P(M=-1)=P(M=1)={\frac 5 {36}}

P(M=0)=636=16P(M=0)={\frac 6 {36}}={\frac 1 6}

b) Since the distribution is symmetrical about M=0, then mean of this distribution E(M)=0E(M)=0

c) Var(X)=E(X2)E2(X)=E(X2)=252136+242236+232336+222436+212536+202636=11036=5518Var(X)=E(X^2)-E^2(X)=E(X^2)=2*5^2*{\frac 1 {36}}+2*4^2*{\frac 2 {36}}+2*3^2*{\frac 3 {36}}+2*2^2*{\frac 4 {36}}+2*1^2*{\frac 5 {36}}+2*0^2*{\frac 6 {36}}={\frac {110} {36}}={\frac {55} {18}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment