Two fair cubical dice are thrown: one is red and one is blue. The random variable
M represents the score on the red die minus the score on the blue die.
a. Find the distribution of M.
b. Write down E(M).
c. Find Var (M)
a) M={-5,-4,-3,-2,-1,0,1,2,3,4,5}
"P(M=-5)=P(M=5)={\\frac 1 {36}}"
"P(M=-4)=P(M=4)={\\frac 2 {36}}={\\frac 1 {18}}"
"P(M=-3)=P(M=3)={\\frac 3 {36}}={\\frac 1 {12}}"
"P(M=-2)=P(M=2)={\\frac 4 {36}}={\\frac 1 9}"
"P(M=-1)=P(M=1)={\\frac 5 {36}}"
"P(M=0)={\\frac 6 {36}}={\\frac 1 6}"
b) Since the distribution is symmetrical about M=0, then mean of this distribution "E(M)=0"
c) "Var(X)=E(X^2)-E^2(X)=E(X^2)=2*5^2*{\\frac 1 {36}}+2*4^2*{\\frac 2 {36}}+2*3^2*{\\frac 3 {36}}+2*2^2*{\\frac 4 {36}}+2*1^2*{\\frac 5 {36}}+2*0^2*{\\frac 6 {36}}={\\frac {110} {36}}={\\frac {55} {18}}"
Comments
Leave a comment