Using the sample space for rolling two dice, construct a probability distribution for the random variable X representing the sum of the numbers that appear.
The sample space "\\varOmega" is
"\\left( 1,1 \\right) ,\\left( 1,2 \\right) ,\\left( 1,3 \\right) ,\\left( 1,4 \\right) ,\\left( 1,5 \\right) ,\\left( 1,6 \\right) \\\\\\left( 2,1 \\right) ,\\left( 2,2 \\right) ,\\left( 2,3 \\right) ,\\left( 2,4 \\right) ,\\left( 2,5 \\right) ,\\left( 2,6 \\right) \\\\\\left( 3,1 \\right) ,\\left( 3,2 \\right) ,\\left( 3,3 \\right) ,\\left( 3,4 \\right) ,\\left( 3,5 \\right) ,\\left( 3,6 \\right) \\\\\\left( 4,1 \\right) ,\\left( 4,2 \\right) ,\\left( 4,3 \\right) ,\\left( 4,4 \\right) ,\\left( 4,5 \\right) ,\\left( 4,6 \\right) \\\\\\left( 5,1 \\right) ,\\left( 5,2 \\right) ,\\left( 5,3 \\right) ,\\left( 5,4 \\right) ,\\left( 5,5 \\right) ,\\left( 5,6 \\right) \\\\\\left( 6,1 \\right) ,\\left( 6,2 \\right) ,\\left( 6,3 \\right) ,\\left( 6,4 \\right) ,\\left( 6,5 \\right) ,\\left( 6,6 \\right)"
The sum for each "\\omega \\in \\varOmega" is respectively
"2,3,4,5,6,7\\\\3,4,5,6,7,8\\\\4,5,6,7,8,9\\\\5,6,7,8,9,10\\\\6,7,8,9,10,11\\\\7,8,9,10,11,12"
Hence for X - sum of rolls:
"P\\left( X=2 \\right) =\\frac{1}{36}\\\\P\\left( X=3 \\right) =\\frac{2}{36}=\\frac{1}{18}\\\\P\\left( X=4 \\right) =\\frac{3}{36}=\\frac{1}{12}\\\\P\\left( X=5 \\right) =\\frac{4}{36}=\\frac{1}{9}\\\\P\\left( X=6 \\right) =\\frac{5}{36}\\\\P\\left( X=7 \\right) =\\frac{6}{36}=\\frac{1}{6}\\\\P\\left( X=8 \\right) =\\frac{5}{36}\\\\P\\left( X=9 \\right) =\\frac{4}{36}=\\frac{1}{9}\\\\P\\left( X=10 \\right) =\\frac{3}{36}=\\frac{1}{12}\\\\P\\left( X=11 \\right) =\\frac{2}{36}=\\frac{1}{18}\\\\P\\left( X=12 \\right) =\\frac{1}{36}"
Comments
Leave a comment