Find the standard deviation of the expected value of the probability distribution, X={1, 2, 3, 4, 5} P(X)={.10, .35, .15, .23, .17}
To find the standard deviation of the probability distribution, we can use the following formula:
where:
"x_i:" the "i^{th}" value
"\\mu:" the mean of the distribution
"P(x_i):" the probability of the "i^{th}" value
"\\mu=1\\cdot0.10+2\\cdot0.35+3\\cdot0.15+4\\cdot0.23+5\\cdot0.17=3.02" "X-\\mu=\\begin{Bmatrix}\n 1-3.02, 2-3.02, 3-3.02, 4-3.02, 5-3.02\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n-2.02, -1.02, -0.02, 0.98, 1.98\n\\end{Bmatrix}"
"\\sigma=\\sqrt{(-2.02)^2\\cdot 0.10+(-1.02)^2\\cdot 0.35+(-0.02)^2\\cdot 0.15+0.98^2\\cdot 0.23+1.98^2\\cdot 0.17}="
"=\\sqrt{1.6596}=1.288"
Comments
Leave a comment