Question #306107

Find the standard deviation of the expected value of the probability distribution, X={1, 2, 3, 4, 5} P(X)={.10, .35, .15, .23, .17}


1
Expert's answer
2022-03-07T09:27:02-0500

To find the standard deviation of the probability distribution, we can use the following formula:


σ=(xiμ)2P(xi)\sigma=\sqrt{\sum(x_i-\mu)^2\cdot P(x_i)}

where:

xi:x_i: the ithi^{th} value

μ:\mu: the mean of the distribution

P(xi):P(x_i): the probability of the ithi^{th} value


μ=10.10+20.35+30.15+40.23+50.17=3.02\mu=1\cdot0.10+2\cdot0.35+3\cdot0.15+4\cdot0.23+5\cdot0.17=3.02 Xμ={13.02,23.02,33.02,43.02,53.02}=X-\mu=\begin{Bmatrix} 1-3.02, 2-3.02, 3-3.02, 4-3.02, 5-3.02 \end{Bmatrix}=

={2.02,1.02,0.02,0.98,1.98}=\begin{Bmatrix} -2.02, -1.02, -0.02, 0.98, 1.98 \end{Bmatrix}

σ=(2.02)20.10+(1.02)20.35+(0.02)20.15+0.9820.23+1.9820.17=\sigma=\sqrt{(-2.02)^2\cdot 0.10+(-1.02)^2\cdot 0.35+(-0.02)^2\cdot 0.15+0.98^2\cdot 0.23+1.98^2\cdot 0.17}=

=1.6596=1.288=\sqrt{1.6596}=1.288


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS