We have population values "1,2,3,5,6, 7" population size "N=6."
1.
"mean=\\mu=\\dfrac{1+2+3+5+6+7}{6}=4"2
"Variance=\\sigma^2=\\dfrac{1}{6}((1-4)^2+(2-4)^2"
"+(3-4)^2+(5-4)^2+(6-4)^2+(7-4)^2)=\\dfrac{14}{3}"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{14}{3}}\\approx2.160247"
3. The population size "N=6" and sample size "n=4."
Thus, the number of possible samples which can be drawn without replacements is "\\dbinom{6}{4}=15."
4.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean\\ (\\bar{x}) \\\\ \\hline\n 1,2,3,5 & 2.75 \\\\\n \\hdashline\n 1,2,3,6 & 3 \\\\\n \\hdashline\n 1,2,3,7 & 3.25 \\\\\n \\hdashline\n 1,2,5,6 & 3.5 \\\\\n \\hdashline\n 1,2,5,7 & 3.75 \\\\\n \\hdashline\n 1,2,6,7 & 4 \\\\\n \\hdashline\n 1,3,5,6 & 3.75 \\\\\n \\hdashline\n 1,3,5,7 & 4 \\\\\n \\hdashline\n 1,3,6,7 & 4.25 \\\\\n \\hdashline\n 1,5, 6,7 & 4.75 \\\\\n \\hdashline\n 2,3,5,6 & 4 \\\\\n \\hdashline\n 2,3,5,7 & 4.25 \\\\\n \\hdashline\n 2,3,6,7 & 4.5 \\\\\n \\hdashline\n 2,5,6,7 & 5 \\\\\n \\hdashline\n 3,5,6,7 & 5.25 \\\\\n \\hdashline\n\\end{array}"
5. The sampling distribution of the sample mean "\\bar{x}" and its mean and standard deviation are:
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n & \\bar{x} & f & f(\\bar{x}) & \\bar{x}f(\\bar{x}) & \\bar{x}^2f(\\bar{x})\\\\ \\hline\n & 2.75 & 1 & 1\/15 & 11\/60 & 121\/240 \\\\\n \\hdashline\n & 3 & 1 & 1\/15 & 12\/60 & 144\/240 \\\\\n \\hdashline\n & 3.25 & 1 & 1\/15 & 13\/60 & 169\/240 \\\\\n \\hdashline\n & 3.5 & 1 & 1\/15 & 14\/60 & 196\/240 \\\\\n \\hdashline\n & 3.75 & 2 & 2\/15 & 30\/60 & 450\/240 \\\\\n \\hdashline\n & 4 & 3 & 3\/15 & 48\/60 & 768\/240 \\\\\n \\hdashline\n & 4.25 & 2 & 2\/15 & 34\/60 & 578\/240 \\\\\n \\hdashline\n & 4.5 & 1 & 1\/15 & 18\/60 & 324\/240 \\\\\n \\hdashline\n & 4.75 & 1 & 1\/15 & 19\/60 & 361\/240 \\\\\n \\hdashline\n & 5 & 1 & 1\/15 & 20\/60 & 400\/240 \\\\\n \\hdashline\n & 5.25 & 1 & 1\/15 & 21\/60 & 441\/240 \\\\\n \\hdashline\n Sum= & & 15 & 1 & 4 & 247\/15 \\\\\n \\hdashline\n\\end{array}"
6.
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{x}f(\\bar{x})=4"
7.
"Var(\\bar{X})=\\sigma_{\\bar{X}}^2=\\sum\\bar{x}^2f(\\bar{x})-(\\sum\\bar{x}f(\\bar{x}))^2"
"=\\dfrac{247}{15}-4^2=\\dfrac{7}{15}"
"\\sigma_{\\bar{X}}=\\sqrt{\\sigma_{\\bar{X}}^2}=\\sqrt{\\dfrac{7}{15}}\\approx0.683130"
Check
"\\mu_{\\bar{X}}=E(\\bar{X})=4=\\mu"
"Var(\\bar{X})=\\dfrac{7}{15}=\\dfrac{\\sigma^2}{n}\\cdot\\dfrac{N-n}{N-1}=\\dfrac{14}{3(4)}\\cdot\\dfrac{6-4}{6-1}"
Comments
Leave a comment