Answer to Question #305023 in Statistics and Probability for Sunitha

Question #305023

Given that P(X=2)=8P(X=4)+80P(X=46) for a Poisson distribution variate X. Find

1) P(X<2)

2) P(X>4)

3) P(X>=1)


1
Expert's answer
2022-03-03T10:01:46-0500

For Poisson's distribution, "P(X=x)"  is given by 


"P(X=x)=\\dfrac{e^{-\\lambda}\\cdot\\lambda^x}{x!}"


It is given that "P(X=2)=8P(X=4)+80P(X=6)"


"\\dfrac{e^{-\\lambda}\\cdot\\lambda^2}{2!}=8\\cdot\\dfrac{e^{-\\lambda}\\cdot\\lambda^4}{4!}+80\\cdot\\dfrac{e^{-\\lambda}\\cdot\\lambda^6}{6!}"

"\\dfrac{\\lambda^2}{2}=\\dfrac{\\lambda^4}{3}+\\dfrac{\\lambda^6}{9}"

Since "\\lambda>0" we obtain


"2\\lambda^4+6\\lambda^2-9=0"

"\\lambda^2=\\dfrac{-3+3\\sqrt{3}}{2}, \\lambda>0"

"\\lambda=\\sqrt{\\dfrac{-3+3\\sqrt{3}}{2}}\\approx1.0479"


1)


"P(X<2)=P(X=0)+P(X=1)"

"=\\dfrac{e^{-1.0479}\\cdot(1.0479)^0}{0!}+\\dfrac{e^{-1.0479}\\cdot(1.0479)^1}{1!}"

"\\approx0.71814"

2)


"P(X>4)=1-P(X=0)-P(X=1)"

"-P(X=2)-P(X=3)="

"=1-\\dfrac{e^{-1.0479}\\cdot(1.0479)^0}{0!}-\\dfrac{e^{-1.0479}\\cdot(1.0479)^1}{1!}"

"-\\dfrac{e^{-1.0479}\\cdot(1.0479)^2}{2!}-\\dfrac{e^{-1.0479}\\cdot(1.0479)^3}{3!}"

"\\approx0.00445"

3)


"P(X\\ge1)=1-P(X=0)"

"=1-\\dfrac{e^{-1.0479}\\cdot(1.0479)^0}{0!}\\approx0.64933"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS