Given that P(X=2)=8P(X=4)+80P(X=46) for a Poisson distribution variate X. Find
1) P(X<2)
2) P(X>4)
3) P(X>=1)
For Poisson's distribution, "P(X=x)" is given by
It is given that "P(X=2)=8P(X=4)+80P(X=6)"
"\\dfrac{\\lambda^2}{2}=\\dfrac{\\lambda^4}{3}+\\dfrac{\\lambda^6}{9}"
Since "\\lambda>0" we obtain
"\\lambda^2=\\dfrac{-3+3\\sqrt{3}}{2}, \\lambda>0"
"\\lambda=\\sqrt{\\dfrac{-3+3\\sqrt{3}}{2}}\\approx1.0479"
1)
"=\\dfrac{e^{-1.0479}\\cdot(1.0479)^0}{0!}+\\dfrac{e^{-1.0479}\\cdot(1.0479)^1}{1!}"
"\\approx0.71814"
2)
"-P(X=2)-P(X=3)="
"=1-\\dfrac{e^{-1.0479}\\cdot(1.0479)^0}{0!}-\\dfrac{e^{-1.0479}\\cdot(1.0479)^1}{1!}"
"-\\dfrac{e^{-1.0479}\\cdot(1.0479)^2}{2!}-\\dfrac{e^{-1.0479}\\cdot(1.0479)^3}{3!}"
"\\approx0.00445"
3)
"=1-\\dfrac{e^{-1.0479}\\cdot(1.0479)^0}{0!}\\approx0.64933"
Comments
Leave a comment