There are "2^4=16" possible outcomes
"S=\\{HHHH, HHHT, HHTH, HTHH, THHH,"
"HHTT, HTHT, HTTH, THTH, THHT, TTHH,"
"HTTT, THTT, TTHT, TTTH, TTTT\\}"The possible values of the random variable "S" are "0, 1, 2, 3, 4."
We will assume that the probability of getting heads and tails is the same:
"p = q =1\/2""\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Possible \\ Outcomes & S \\\\ \\hline\n HHHH & 0 \\\\\n \\hdashline\n HHHT & 1 \\\\\n \\hdashline\n HHTH & 1 \\\\\n \\hdashline\n HTHH & 1 \\\\\n \\hdashline\n THHH & 1 \\\\\n \\hdashline\n HHTT & 2 \\\\\n \\hdashline\n HTHT & 2 \\\\\n \\hdashline\n HTTH & 2 \\\\\n \\hdashline\n THTH & 2 \\\\\n \\hdashline\n THHT & 2 \\\\\n \\hdashline\n TTHH & 2 \\\\\n \\hdashline\n HTTT & 3 \\\\\n \\hdashline\n THTT & 3 \\\\\n \\hdashline\n TTHT & 3 \\\\\n \\hdashline\n TTTH & 3 \\\\\n \\hdashline\n TTTT & 4 \\\\\n \\hdashline\n\\end{array}"
Construct the probability distribution of the random variable
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n s & 0 & 1 & 2 & 3 & 4 \\\\ \\hline\n p(s) & 1\/16 & 1\/4 & 3\/8 & 1\/4 & 1\/16\n\\end{array}" or
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n s & 0 & 1 & 2 & 3 & 4 \\\\ \\hline\n p(s) & 0.0625 & 0.25 & 0.375 & 0.25 & 0.0625\n\\end{array}"
Comments
Leave a comment