Find the variance for the sample given in a.
2, 4, 7, 12, 15
Sample variance can be found as
s2=∑i=1n(xi−x)2n−1s^2={\frac {\displaystyle\sum_{i=1}^n(x_i-x)^2} {n-1}}s2=n−1i=1∑n(xi−x)2 , where n - sample size, x - sample mean
In the given case
x=2+4+7+12+155=8x={\frac {2+4+7+12+15} 5}=8x=52+4+7+12+15=8
s2=(2−8)2+...+(15−8)25−1=1184=29.5s^2={\frac {(2-8)^2+...+(15-8)^2} {5-1}}={\frac {118} 4}=29.5s2=5−1(2−8)2+...+(15−8)2=4118=29.5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments