Question #300950

A population consists of the five measurements 1, 3, 4, 6, and 8. Suppose samples of size 3 are drawn from this population. 

Construct a table, solve for the mean, variance and standard deviation.


1
Expert's answer
2022-02-22T23:00:02-0500

We have population values 1,3,4,6,8,1,3,4,6,8, population size N= 5  and sample size n = 3.  Thus, the number of possible samples which can be drawn without replacement is

( NCn) = (5C3) = 10

Sample no sample values sample means

1 1,3,4 8/3

2 1,3,6 10/3

3 1,3,8 4

4 1,4,6 11/3

5 1,4,8 13/3

6 1,6,8 5

7 3,4,6 13/3

8 3,4,8 5

9 3,6,8 17/3

10 4,6,8 6



we obtain the mean, variance and standard deviation as below


The sampling distribution of the sample means.



Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)8/311/108/3064/9010/311/1010/30100/9011/311/1011/30121/90411/1012/30144/9013/322/1026/30338/90522/1030/30450/9017/311/1017/30289/90611/1018/30324/90Total101132/301830/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 8/3 & 1& 1/10 & 8/30 & 64/90 \\ \hdashline 10/3 & 1& 1/10 & 10/30 & 100/90 \\ \hdashline 11/3 & 1& 1/10 & 11/30 & 121/90 \\ \hdashline 4 & 1& 1/10 & 12/30 & 144/90 \\ \hdashline 13/3 & 2& 2/10 & 26/30 & 338/90 \\ \hdashline 5 & 2& 2/10 & 30/30 & 450/90 \\ \hdashline 17/3 & 1& 1/10 & 17/30 & 289/90 \\ \hdashline 6 & 1& 1/10 & 18/30 & 324/90 \\ \hdashline Total & 10 & 1 & 132/30 & 1830/90 \\ \hline \end{array}mean=(132/30)=4.4,variance=(1830/90)(4.44.4)=0.97333,std=(0.97333)1/2=0.98657mean=(132/30)=4.4 ,\\variance=(1830/90)-(4.4*4.4)=0.97333, \\std =(0.97333)^{1/2}=0.98657

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS