Question #300935

In a Math test, the mean score is 45 and the standard deviation is 4.




Assuming normality, what is the probability that a score picked at random will lie




a. above score 50?




b. below score 38?




c. between 35 and 53?

1
Expert's answer
2022-02-25T11:59:02-0500

μ=45σ=4\mu=45\\\sigma=4

Let the random variable XX represent a Math test score.

a)

We determine

p(x>50)=p(xμσ>50μσ)=p(Z>50454)=p(Z>1.25)=1p(Z<1.25)=10.8944=0.1056p(x\gt 50)=p({x-\mu\over \sigma}\gt{50-\mu\over\sigma})=p(Z\gt {50-45\over4})=p(Z\gt 1.25)=1-p(Z\lt 1.25)=1-0.8944=0.1056

b) We find

p(x<38)=p(Z<38454)=p(Z<1.75)=ϕ(1.75)=0.0401p(x\lt38)=p(Z\lt{38-45\over4})=p(Z\lt -1.75)=\phi(-1.75)=0.0401  

c)

p(35<x<53)=p(35454<Z<53454)=p(2.5<Z<2)=ϕ(2)ϕ(2.5)=0.97720.0062=0.971p(35\lt x\lt 53)=p({35-45\over4}\lt Z\lt{53-45\over 4})=p(-2.5\lt Z\lt 2)=\phi(2)-\phi(-2.5)=0.9772-0.0062=0.971


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS