In a Math test, the mean score is 45 and the standard deviation is 4.
Assuming normality, what is the probability that a score picked at random will lie
a. above score 50?
b. below score 38?
c. between 35 and 53?
"\\mu=45\\\\\\sigma=4"
Let the random variable "X" represent a Math test score.
a)
We determine
"p(x\\gt 50)=p({x-\\mu\\over \\sigma}\\gt{50-\\mu\\over\\sigma})=p(Z\\gt {50-45\\over4})=p(Z\\gt 1.25)=1-p(Z\\lt 1.25)=1-0.8944=0.1056"
b) We find
"p(x\\lt38)=p(Z\\lt{38-45\\over4})=p(Z\\lt -1.75)=\\phi(-1.75)=0.0401"
c)
"p(35\\lt x\\lt 53)=p({35-45\\over4}\\lt Z\\lt{53-45\\over 4})=p(-2.5\\lt Z\\lt 2)=\\phi(2)-\\phi(-2.5)=0.9772-0.0062=0.971"
Comments
Leave a comment