Question #300651

1. Let X be random variable with values 4,5,6,7,8 and 9




a. Find the mean and the variance of the sample without replacement of n=2.




b. Find a the sampling distribution of the mean and construct it's histogram




2. An electrical firm manufactures light bulbs that have mean life span of 750 hours with a standard deviation of 30 hours. Assume that the mean life span of manufactured light bulbs is almost normal distributed. If a sample of 25 light bulbs are random selected, find the:




a. Probability that their mean life span is less than 740 hours.




b. Probability that their mean life span is greater than 775 hours .




Draw the normal distribution curve for each item.

1
Expert's answer
2022-02-22T07:33:32-0500

1. We have population values 4,5,6,7,8,9,4,5,6,7,8,9, population size N=6N=6  and sample size n=2.n=2.

Thus, the number of possible samples which can be drawn without replacements is (62)=15.\dbinom{6}{2}=15.

a.


Sample valuesSample mean (xˉ)4,54.54,654,75.54,864,96.55,65.55,765,86.55,976,76.56,876,97.57,87.57,988,98.5\def\arraystretch{1.5} \begin{array}{c:c} Sample\ values & Sample\ mean\ (\bar{x}) \\ \hline 4,5 & 4.5 \\ \hdashline 4,6 & 5 \\ \hdashline 4,7 & 5.5 \\ \hdashline 4,8 & 6 \\ \hdashline 4,9 & 6.5 \\ \hdashline 5,6 & 5.5 \\ \hdashline 5,7 & 6 \\ \hdashline 5,8 & 6.5 \\ \hdashline 5,9 & 7 \\ \hdashline 6,7 & 6.5 \\ \hdashline 6,8 & 7 \\ \hdashline 6,9 & 7.5 \\ \hdashline 7,8 & 7.5 \\ \hdashline 7,9 & 8 \\ \hdashline 8,9 & 8.5 \\ \hdashline \end{array}xˉff(xˉ)xˉf(xˉ)xˉ2f(xˉ)4.511/159/3081/60511/1510/30100/605.522/1522/30242/60622/1524/30288/606.533/1539/30507/60722/1528/30392/607.522/1530/30450/60811/1516/30256/608.511/1517/30289/60Sum=1516.5521/12\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{x} & f & f(\bar{x}) & \bar{x}f(\bar{x})& \bar{x}^2 f(\bar{x})\\ \hline & 4.5 & 1 & 1/15 & 9/30 & 81/60 \\ \hdashline & 5 & 1 & 1/15 & 10/30 & 100/60 \\ \hdashline & 5.5 & 2 & 2/15 & 22/30 & 242/60 \\ \hdashline & 6 & 2 & 2/15 & 24/30 & 288/60 \\ \hdashline & 6.5 & 3 & 3/15 & 39/30 & 507/60 \\ \hdashline & 7 & 2 & 2/15 & 28/30 & 392/60 \\ \hdashline & 7.5 & 2 & 2/15 & 30/30 & 450/60 \\ \hdashline & 8 & 1 & 1/15 & 16/30 & 256/60 \\ \hdashline & 8.5 & 1 & 1/15 & 17/30 & 289/60 \\ \hdashline Sum= & & 15 & 1 & 6.5 & 521/12 \\ \hdashline \end{array}


μxˉ=E(Xˉ)=6.5\mu_{\bar{x}}=E(\bar{X})=6.5

Var(Xˉ)=σxˉ2=E(Xˉ2)(E(Xˉ))2Var(\bar{X})=\sigma_{\bar{x}}^2=E(\bar{X}^2)-(E(\bar{X}))^2

=521/12(13/2)2=7/6=521/12-(13/2)^2=7/6

b.

x    4.555.566.577.588.5p(x) 11511521521515215215115115\begin{matrix} x\ \ \ \ 4.5 & 5 & 5.5 & 6 & 6.5 & 7 & 7.5 & 8 & 8.5\\ \\ p(x)\ \dfrac{1}{15} & \dfrac{1}{15} & \dfrac{2}{15} & \dfrac{2}{15} & \dfrac{1}{5} &\dfrac{2}{15} & \dfrac{2}{15} & \dfrac{1}{15} & \dfrac{1}{15} \end{matrix}




2. Let X=X= the mean life span: XN(μ,σ2/n).X\sim N(\mu, \sigma^2/n).

Given μ=750 h,σ=30 h,n=25.\mu=750 \ h, \sigma=30\ h, n=25.

a.


P(X<740)=P(Z<74075030/25)P(X<740)=P(Z<\dfrac{740-750}{30/\sqrt{25}})

=P(Z<5/3)0.0478=P(Z<-5/3)\approx0.0478




b.


P(X>775)=1P(X775)P(X>775)=1-P(X\le 775)

=1P(Z77575030/25)=1-P(Z\le\dfrac{775-750}{30/\sqrt{25}})

=1P(Z25/6)0.000015=1-P(Z\le-25/6)\approx0.000015

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS