Answer to Question #300651 in Statistics and Probability for Owen

Question #300651

1. Let X be random variable with values 4,5,6,7,8 and 9




a. Find the mean and the variance of the sample without replacement of n=2.




b. Find a the sampling distribution of the mean and construct it's histogram




2. An electrical firm manufactures light bulbs that have mean life span of 750 hours with a standard deviation of 30 hours. Assume that the mean life span of manufactured light bulbs is almost normal distributed. If a sample of 25 light bulbs are random selected, find the:




a. Probability that their mean life span is less than 740 hours.




b. Probability that their mean life span is greater than 775 hours .




Draw the normal distribution curve for each item.

1
Expert's answer
2022-02-22T07:33:32-0500

1. We have population values "4,5,6,7,8,9," population size "N=6"  and sample size "n=2."

Thus, the number of possible samples which can be drawn without replacements is "\\dbinom{6}{2}=15."

a.


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean\\ (\\bar{x}) \\\\ \\hline\n 4,5 & 4.5 \\\\\n \\hdashline\n 4,6 & 5 \\\\\n \\hdashline\n 4,7 & 5.5 \\\\\n \\hdashline\n 4,8 & 6 \\\\\n \\hdashline\n 4,9 & 6.5 \\\\\n \\hdashline\n 5,6 & 5.5 \\\\\n \\hdashline\n 5,7 & 6 \\\\\n \\hdashline\n 5,8 & 6.5 \\\\\n \\hdashline\n 5,9 & 7 \\\\\n \\hdashline\n 6,7 & 6.5 \\\\\n \\hdashline\n 6,8 & 7 \\\\\n \\hdashline\n 6,9 & 7.5 \\\\\n \\hdashline\n 7,8 & 7.5 \\\\\n \\hdashline\n 7,9 & 8 \\\\\n \\hdashline\n 8,9 & 8.5 \\\\\n \\hdashline\n\\end{array}""\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n & \\bar{x} & f & f(\\bar{x}) & \\bar{x}f(\\bar{x})& \\bar{x}^2 f(\\bar{x})\\\\ \\hline\n & 4.5 & 1 & 1\/15 & 9\/30 & 81\/60 \\\\\n \\hdashline\n & 5 & 1 & 1\/15 & 10\/30 & 100\/60 \\\\\n \\hdashline\n & 5.5 & 2 & 2\/15 & 22\/30 & 242\/60 \\\\\n \\hdashline\n & 6 & 2 & 2\/15 & 24\/30 & 288\/60 \\\\\n \\hdashline\n & 6.5 & 3 & 3\/15 & 39\/30 & 507\/60 \\\\\n \\hdashline\n & 7 & 2 & 2\/15 & 28\/30 & 392\/60 \\\\\n \\hdashline\n & 7.5 & 2 & 2\/15 & 30\/30 & 450\/60 \\\\\n \\hdashline\n & 8 & 1 & 1\/15 & 16\/30 & 256\/60 \\\\\n \\hdashline\n & 8.5 & 1 & 1\/15 & 17\/30 & 289\/60 \\\\\n \\hdashline\n Sum= & & 15 & 1 & 6.5 & 521\/12 \\\\\n \\hdashline\n\\end{array}"


"\\mu_{\\bar{x}}=E(\\bar{X})=6.5"

"Var(\\bar{X})=\\sigma_{\\bar{x}}^2=E(\\bar{X}^2)-(E(\\bar{X}))^2"

"=521\/12-(13\/2)^2=7\/6"

b.

"\\begin{matrix}\nx\\ \\ \\ \\ 4.5 & 5 & 5.5 & 6 & 6.5 & 7 & 7.5 & 8 & 8.5\\\\\n\\\\\n p(x)\\ \\dfrac{1}{15} & \\dfrac{1}{15} & \\dfrac{2}{15} & \\dfrac{2}{15} & \\dfrac{1}{5} &\\dfrac{2}{15} & \\dfrac{2}{15} & \\dfrac{1}{15} & \\dfrac{1}{15}\n\\end{matrix}"




2. Let "X=" the mean life span: "X\\sim N(\\mu, \\sigma^2\/n)."

Given "\\mu=750 \\ h, \\sigma=30\\ h, n=25."

a.


"P(X<740)=P(Z<\\dfrac{740-750}{30\/\\sqrt{25}})"

"=P(Z<-5\/3)\\approx0.0478"




b.


"P(X>775)=1-P(X\\le 775)"

"=1-P(Z\\le\\dfrac{775-750}{30\/\\sqrt{25}})"

"=1-P(Z\\le-25\/6)\\approx0.000015"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS