Answer to Question #300634 in Statistics and Probability for Jeyem

Question #300634

Given the data 6, 9, 12, 15, 16, 19, 22. Construct a sampling distribution of the sample mean without replacement and repetition by selecting 2 samples at a time.


1
Expert's answer
2022-02-22T11:56:48-0500

We have population values "6,9,12,15,16,19,22" population size "N=7"  and sample size "n=2."

Thus, the number of possible samples which can be drawn without replacements is "\\dbinom{7}{2}=21."


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean\\ (\\bar{x}) \\\\ \\hline\n 6,9 & 7.5 \\\\\n \\hdashline\n 6,12 & 9 \\\\\n \\hdashline\n 6,15 & 10.5 \\\\\n \\hdashline\n 6,16 & 11 \\\\\n \\hdashline\n 6,19 & 12.5 \\\\\n \\hdashline\n 6,22 & 14 \\\\\n \\hdashline\n 9,12 & 10.5 \\\\\n \\hdashline\n 9,15 & 12 \\\\\n \\hdashline\n 9,16 & 12.5 \\\\\n \\hdashline\n 9,19 & 14 \\\\\n \\hdashline\n 9,22 & 15.5 \\\\\n \\hdashline\n 12,15 & 13.5 \\\\\n \\hdashline\n 12,16 & 14 \\\\\n \\hdashline\n 12,19 & 15.5 \\\\\n \\hdashline\n 12,22 & 17 \\\\\n \\hdashline\n 15,16 & 15.5 \\\\\n \\hdashline\n 15,19 & 17 \\\\\n \\hdashline\n 15,22 & 18.5 \\\\\n \\hdashline\n 16,19 & 17.5 \\\\\n \\hdashline\n 16,22 & 19 \\\\\n \\hdashline\n 19,22 & 20.5 \\\\\n \\hdashline\n\\end{array}"



"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n & \\bar{x} & f & f(\\bar{x}) & \\bar{x}f(\\bar{x})\\\\ \\hline\n & 7.5 & 1 & 1\/21 & 5\/14 \\\\\n \\hdashline\n & 9 & 1 & 1\/21 & 3\/7 \\\\\n \\hdashline\n & 10.5 & 2 & 2\/21 & 1 \\\\\n \\hdashline\n & 11 & 1 & 1\/21 & 11\/21 \\\\\n \\hdashline\n & 12 & 1 & 1\/21 & 4\/7 \\\\\n \\hdashline\n & 12.5 & 2 & 2\/21 & 25\/21 \\\\\n \\hdashline\n & 13.5 & 1 & 1\/21 & 9\/14 \\\\\n \\hdashline\n & 14 & 3 & 1\/7 & 2 \\\\\n \\hdashline\n & 15.5 & 3 & 1\/7 & 31\/14 \\\\\n \\hdashline\n & 17 & 2 & 2\/21 & 34\/21 \\\\\n \\hdashline\n & 17.5 & 1 & 1\/21 & 5\/6 \\\\\n \\hdashline\n & 18.5 & 1 & 1\/21 & 37\/42 \\\\\n \\hdashline\n & 19 & 1 & 1\/21 & 19\/21 \\\\\n \\hdashline\n & 20.5 & 1 & 1\/21 & 41\/42 \\\\\n \\hdashline\n Sum= & & 21 & 1 & 99\/7 \\\\\n \\hdashline\n\\end{array}"


"\\mu_{\\bar{x}}=E(\\bar{X})=99\/7"


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\nx & p(x)\\\\ \\hline\n7.5 & 1\/21\\\\\n \\hdashline\n9 & 1\/21 \\\\\n \\hdashline\n10.5 & 2\/21 \\\\\n \\hdashline\n11 & 1\/21 \\\\\n \\hdashline\n12 & 1\/21 \\\\\n \\hdashline\n12.5 & 2\/21 \\\\\n \\hdashline\n 13.5 & 1\/21\\\\\n \\hdashline\n 14 & 1\/7\\\\\n \\hdashline\n 15.5 & 1\/7 \\\\\n \\hdashline\n17& 2\/21 \\\\\n \\hdashline\n17.5 & 1\/21 \\\\\n \\hdashline\n18.5& 1\/21 \\\\\n \\hdashline\n19& 1\/21 \\\\\n \\hdashline\n20.5& 1\/21 \\\\\n\\end{array}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS