Answer to Question #299693 in Statistics and Probability for bonke

Question #299693

Y10with usual OLS assumptions.  Derive the expression for the error variance.


1
Expert's answer
2022-02-22T07:51:06-0500

To derive variance for OLS estimator.

Solution:

"\\begin{aligned}\n\n&\\operatorname{Var}(\\hat{\\alpha})=E\\left[(\\hat{\\beta}-\\beta)^{2}(\\bar{X})^{2}\\right]+E\\left(\\bar{\\varepsilon}^{2}\\right)-E[2 \\bar{\\varepsilon}(\\hat{\\beta}-\\beta) \\bar{X}] \\\\\n\n&\\operatorname{Var}(\\hat{\\alpha})=(\\bar{X})^{2} \\operatorname{Var}(\\hat{\\beta})+\\operatorname{Var}(\\bar{\\varepsilon})-2 \\bar{X} \\times E[\\bar{\\varepsilon}(\\hat{\\beta}-\\beta)]...(i) \\\\\n\n&E[\\bar{\\varepsilon}(\\hat{\\beta}-\\beta)]=\\frac{\\sigma^{2}}{n^{2}}{\\sigma_{r}^{2}} E[0]=0\n\n\\end{aligned}"

Substituting this in equation (i) ,

"\\begin{gathered}\n\n\\operatorname{Var}(\\hat{\\alpha})=(\\bar{X})^{2} \\operatorname{Var}(\\hat{\\beta})+\\operatorname{Var}(\\vec{\\varepsilon})-2 \\bar{X} \\times 0 \\\\\n\n\\operatorname{Var}(\\hat{\\alpha})=(\\bar{X})^{2} \\operatorname{Var}(\\hat{\\beta})+\\operatorname{Var}(\\bar{\\varepsilon}) \\\\\n\n\\operatorname{Var}(\\hat{\\alpha})=(\\bar{X})^{2} \\frac{\\sigma^{2}}{n \\widehat{\\sigma_{x}^{2}}}+\\operatorname{Var}\\left(\\frac{1}{n} \\sum_{j=1}^{n} \\varepsilon_{j}\\right) \\quad\\left[\\text { using } \\operatorname{Var}(\\hat{\\beta})=\\frac{\\sigma^{2}}{\\mathrm{n} \\widehat{\\sigma_{\\mathrm{X}}^{2}}} \\text { and } \\bar{\\varepsilon}=\\frac{1}{n} \\sum_{j=1}^{n} \\varepsilon_{j}]\\right.\n\\end{gathered}"

"\\operatorname{Var}(\\hat{\\alpha})=\\frac{(\\bar{X})^{2} \\sigma^{2}}{n \\widehat{\\sigma_{x}^{2}}}+\\left(\\frac{1}{n}\\right)^{2} \\operatorname{Var}\\left(\\sum_{j=1}^{n} \\varepsilon_{j}\\right) \\quad \\text { [ Using } \\operatorname{Var}(Y)=\\operatorname{Var}(a X+b)=a^{2} \\operatorname{Var}(X)]"

The error terms "\\varepsilon 1, \\varepsilon 2, \\ldots, \\varepsilon_{j}"  are independent. Thus, using property 2 B ,

"\\operatorname{Var}(\\hat{\\alpha})=\\frac{(\\bar{X})^{2} \\sigma^{2}}{n \\widehat{\\sigma_{x}^{2}}}+\\frac{1}{n^{2}} \\sum_{j=1}^{n} \\operatorname{Var}\\left(\\varepsilon_{j}\\right)"

Once again, by constant variance assumption, "\\operatorname{Var}\\left(\\varepsilon_{i}\\right)=\\sigma^{2}"  (a constant),

"\\begin{aligned}\n\n\\therefore \\operatorname{Var}(\\hat{\\alpha}) &=\\frac{(\\bar{X})^{2} \\sigma^{2}}{n \\widehat{\\sigma_{x}^{2}}}+\\frac{1}{n^{2}} \\sum_{j=1}^{n} \\sigma^{2} \\\\\n\n\\operatorname{Var}(\\hat{\\alpha}) &=\\frac{(\\bar{X})^{2} \\sigma^{2}}{n \\widehat{\\sigma_{x}^{2}}}+\\frac{n \\sigma^{2}}{n^{2}} \\\\\n\n\\operatorname{Var}(\\hat{\\alpha}) &=\\frac{(\\bar{X})^{2} \\sigma^{2}}{n \\widehat{\\sigma_{x}^{2}}}+\\frac{\\sigma^{2}}{n}\n\n\\end{aligned}"

This is the required variance of OLS estimator.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS