Answer to Question #299693 in Statistics and Probability for bonke

Question #299693

Y10with usual OLS assumptions.  Derive the expression for the error variance.


1
Expert's answer
2022-02-22T07:51:06-0500

To derive variance for OLS estimator.

Solution:

Var(α^)=E[(β^β)2(Xˉ)2]+E(εˉ2)E[2εˉ(β^β)Xˉ]Var(α^)=(Xˉ)2Var(β^)+Var(εˉ)2Xˉ×E[εˉ(β^β)]...(i)E[εˉ(β^β)]=σ2n2σr2E[0]=0\begin{aligned} &\operatorname{Var}(\hat{\alpha})=E\left[(\hat{\beta}-\beta)^{2}(\bar{X})^{2}\right]+E\left(\bar{\varepsilon}^{2}\right)-E[2 \bar{\varepsilon}(\hat{\beta}-\beta) \bar{X}] \\ &\operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \operatorname{Var}(\hat{\beta})+\operatorname{Var}(\bar{\varepsilon})-2 \bar{X} \times E[\bar{\varepsilon}(\hat{\beta}-\beta)]...(i) \\ &E[\bar{\varepsilon}(\hat{\beta}-\beta)]=\frac{\sigma^{2}}{n^{2}}{\sigma_{r}^{2}} E[0]=0 \end{aligned}

Substituting this in equation (i) ,

Var(α^)=(Xˉ)2Var(β^)+Var(ε)2Xˉ×0Var(α^)=(Xˉ)2Var(β^)+Var(εˉ)Var(α^)=(Xˉ)2σ2nσx2^+Var(1nj=1nεj)[ using Var(β^)=σ2nσX2^ and εˉ=1nj=1nεj]\begin{gathered} \operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \operatorname{Var}(\hat{\beta})+\operatorname{Var}(\vec{\varepsilon})-2 \bar{X} \times 0 \\ \operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \operatorname{Var}(\hat{\beta})+\operatorname{Var}(\bar{\varepsilon}) \\ \operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \frac{\sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\operatorname{Var}\left(\frac{1}{n} \sum_{j=1}^{n} \varepsilon_{j}\right) \quad\left[\text { using } \operatorname{Var}(\hat{\beta})=\frac{\sigma^{2}}{\mathrm{n} \widehat{\sigma_{\mathrm{X}}^{2}}} \text { and } \bar{\varepsilon}=\frac{1}{n} \sum_{j=1}^{n} \varepsilon_{j}]\right. \end{gathered}

Var(α^)=(Xˉ)2σ2nσx2^+(1n)2Var(j=1nεj) [ Using Var(Y)=Var(aX+b)=a2Var(X)]\operatorname{Var}(\hat{\alpha})=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(\sum_{j=1}^{n} \varepsilon_{j}\right) \quad \text { [ Using } \operatorname{Var}(Y)=\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)]

The error terms ε1,ε2,,εj\varepsilon 1, \varepsilon 2, \ldots, \varepsilon_{j}  are independent. Thus, using property 2 B ,

Var(α^)=(Xˉ)2σ2nσx2^+1n2j=1nVar(εj)\operatorname{Var}(\hat{\alpha})=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Var}\left(\varepsilon_{j}\right)

Once again, by constant variance assumption, Var(εi)=σ2\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}  (a constant),

Var(α^)=(Xˉ)2σ2nσx2^+1n2j=1nσ2Var(α^)=(Xˉ)2σ2nσx2^+nσ2n2Var(α^)=(Xˉ)2σ2nσx2^+σ2n\begin{aligned} \therefore \operatorname{Var}(\hat{\alpha}) &=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{1}{n^{2}} \sum_{j=1}^{n} \sigma^{2} \\ \operatorname{Var}(\hat{\alpha}) &=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{n \sigma^{2}}{n^{2}} \\ \operatorname{Var}(\hat{\alpha}) &=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{\sigma^{2}}{n} \end{aligned}

This is the required variance of OLS estimator.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment