To derive variance for OLS estimator.
Var ( α ^ ) = E [ ( β ^ − β ) 2 ( X ˉ ) 2 ] + E ( ε ˉ 2 ) − E [ 2 ε ˉ ( β ^ − β ) X ˉ ] Var ( α ^ ) = ( X ˉ ) 2 Var ( β ^ ) + Var ( ε ˉ ) − 2 X ˉ × E [ ε ˉ ( β ^ − β ) ] . . . ( i ) E [ ε ˉ ( β ^ − β ) ] = σ 2 n 2 σ r 2 E [ 0 ] = 0 \begin{aligned}
&\operatorname{Var}(\hat{\alpha})=E\left[(\hat{\beta}-\beta)^{2}(\bar{X})^{2}\right]+E\left(\bar{\varepsilon}^{2}\right)-E[2 \bar{\varepsilon}(\hat{\beta}-\beta) \bar{X}] \\
&\operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \operatorname{Var}(\hat{\beta})+\operatorname{Var}(\bar{\varepsilon})-2 \bar{X} \times E[\bar{\varepsilon}(\hat{\beta}-\beta)]...(i) \\
&E[\bar{\varepsilon}(\hat{\beta}-\beta)]=\frac{\sigma^{2}}{n^{2}}{\sigma_{r}^{2}} E[0]=0
\end{aligned} Var ( α ^ ) = E [ ( β ^ − β ) 2 ( X ˉ ) 2 ] + E ( ε ˉ 2 ) − E [ 2 ε ˉ ( β ^ − β ) X ˉ ] Var ( α ^ ) = ( X ˉ ) 2 Var ( β ^ ) + Var ( ε ˉ ) − 2 X ˉ × E [ ε ˉ ( β ^ − β )] ... ( i ) E [ ε ˉ ( β ^ − β )] = n 2 σ 2 σ r 2 E [ 0 ] = 0
Substituting this in equation (i) ,
Var ( α ^ ) = ( X ˉ ) 2 Var ( β ^ ) + Var ( ε ⃗ ) − 2 X ˉ × 0 Var ( α ^ ) = ( X ˉ ) 2 Var ( β ^ ) + Var ( ε ˉ ) Var ( α ^ ) = ( X ˉ ) 2 σ 2 n σ x 2 ^ + Var ( 1 n ∑ j = 1 n ε j ) [ using Var ( β ^ ) = σ 2 n σ X 2 ^ and ε ˉ = 1 n ∑ j = 1 n ε j ] \begin{gathered}
\operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \operatorname{Var}(\hat{\beta})+\operatorname{Var}(\vec{\varepsilon})-2 \bar{X} \times 0 \\
\operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \operatorname{Var}(\hat{\beta})+\operatorname{Var}(\bar{\varepsilon}) \\
\operatorname{Var}(\hat{\alpha})=(\bar{X})^{2} \frac{\sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\operatorname{Var}\left(\frac{1}{n} \sum_{j=1}^{n} \varepsilon_{j}\right) \quad\left[\text { using } \operatorname{Var}(\hat{\beta})=\frac{\sigma^{2}}{\mathrm{n} \widehat{\sigma_{\mathrm{X}}^{2}}} \text { and } \bar{\varepsilon}=\frac{1}{n} \sum_{j=1}^{n} \varepsilon_{j}]\right.
\end{gathered} Var ( α ^ ) = ( X ˉ ) 2 Var ( β ^ ) + Var ( ε ) − 2 X ˉ × 0 Var ( α ^ ) = ( X ˉ ) 2 Var ( β ^ ) + Var ( ε ˉ ) Var ( α ^ ) = ( X ˉ ) 2 n σ x 2 σ 2 + Var ( n 1 j = 1 ∑ n ε j ) [ using Var ( β ^ ) = n σ X 2 σ 2 and ε ˉ = n 1 j = 1 ∑ n ε j ]
Var ( α ^ ) = ( X ˉ ) 2 σ 2 n σ x 2 ^ + ( 1 n ) 2 Var ( ∑ j = 1 n ε j ) [ Using Var ( Y ) = Var ( a X + b ) = a 2 Var ( X ) ] \operatorname{Var}(\hat{\alpha})=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(\sum_{j=1}^{n} \varepsilon_{j}\right) \quad \text { [ Using } \operatorname{Var}(Y)=\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)] Var ( α ^ ) = n σ x 2 ( X ˉ ) 2 σ 2 + ( n 1 ) 2 Var ( ∑ j = 1 n ε j ) [ Using Var ( Y ) = Var ( a X + b ) = a 2 Var ( X )]
The error terms ε 1 , ε 2 , … , ε j \varepsilon 1, \varepsilon 2, \ldots, \varepsilon_{j} ε 1 , ε 2 , … , ε j are independent. Thus, using property 2 B ,
Var ( α ^ ) = ( X ˉ ) 2 σ 2 n σ x 2 ^ + 1 n 2 ∑ j = 1 n Var ( ε j ) \operatorname{Var}(\hat{\alpha})=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Var}\left(\varepsilon_{j}\right) Var ( α ^ ) = n σ x 2 ( X ˉ ) 2 σ 2 + n 2 1 ∑ j = 1 n Var ( ε j )
Once again, by constant variance assumption, Var ( ε i ) = σ 2 \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} Var ( ε i ) = σ 2 (a constant),
∴ Var ( α ^ ) = ( X ˉ ) 2 σ 2 n σ x 2 ^ + 1 n 2 ∑ j = 1 n σ 2 Var ( α ^ ) = ( X ˉ ) 2 σ 2 n σ x 2 ^ + n σ 2 n 2 Var ( α ^ ) = ( X ˉ ) 2 σ 2 n σ x 2 ^ + σ 2 n \begin{aligned}
\therefore \operatorname{Var}(\hat{\alpha}) &=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{1}{n^{2}} \sum_{j=1}^{n} \sigma^{2} \\
\operatorname{Var}(\hat{\alpha}) &=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{n \sigma^{2}}{n^{2}} \\
\operatorname{Var}(\hat{\alpha}) &=\frac{(\bar{X})^{2} \sigma^{2}}{n \widehat{\sigma_{x}^{2}}}+\frac{\sigma^{2}}{n}
\end{aligned} ∴ Var ( α ^ ) Var ( α ^ ) Var ( α ^ ) = n σ x 2 ( X ˉ ) 2 σ 2 + n 2 1 j = 1 ∑ n σ 2 = n σ x 2 ( X ˉ ) 2 σ 2 + n 2 n σ 2 = n σ x 2 ( X ˉ ) 2 σ 2 + n σ 2
This is the required variance of OLS estimator.
Comments
Leave a comment