Question #299661

The lifetime of a certain kind of bulb has a normal distribution with mean of 500 hours and standard deviation of 45 hours

Find the percentage of bulbs with a lifetime of at least 570 hrs

The percentage of bulbs with lifetime in between 485 and 515 hrs

The minimum lifetime of the best 5% of the bulbs


1
Expert's answer
2022-02-21T15:02:33-0500

Let X=X= lifetime of a certain kind of bulb: XN(μ,σ2).X\sim N(\mu, \sigma^2).

Given μ=500h,σ=45h.\mu=500h, \sigma=45h.

i)


P(X570)=1P(X<570)P(X\ge570)=1-P(X<570)

=1P(Z<57050045)=1-P(Z<\dfrac{570-500}{45})

1P(Z<1.555556)0.0599\approx1-P(Z<1.555556)\approx0.0599

5.99%5.99\%


ii)



P(485<X<515)=P(X<515)P(X485)P(485<X<515)=P(X<515)-P(X\le485)

=P(Z<51550045)P(Z48550045)=P(Z<\dfrac{515-500}{45})-P(Z\le\dfrac{485-500}{45})

P(Z<0.333333)P(Z<0.333333)0.2611\approx P(Z<0.333333)-P(Z<-0.333333)\approx0.2611

26.11%26.11\%


iii)


P(Xx)=1P(X<x)P(X\ge x)=1-P(X<x)

=1P(Z<x50045)=0.05=1-P(Z<\dfrac{x-500}{45})=0.05

x500451.6449\dfrac{x-500}{45}\approx1.6449x=45(1.6449)+500x=45(1.6449)+500

x=574 hoursx=574\ hours



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS