Question #296279

The manufacturer of a certain kind of light bulb claims that the lifetime of the bulb in hours, X can be modeled as a random quantity with PDF.



fX(x)=0,c/x^2



x< 100



x> 100, where e is a constant. i. What value must e take in order for this to define a valid PDF? ii. What is the probability that the bulb lasts no longer than 150 hours? ii. Given that a bulb lasts longer than 150 hours, what is the probability that it lasts longer than 200 hours? Evaluate the cumulative distribution function.

1
Expert's answer
2022-02-11T12:51:57-0500

i)i)

f(x)dx=c1001x2dx=c×1x100=c100=1    c=100\int_{-\infty}^{\infty} f(x)dx=c\int_{100}^{\infty}{\frac 1 {x^2}}dx=-c\times{\frac 1 x}|_{100}^{\infty}={\frac c {100}}=1\implies c=100



ii)ii)

(ii) P(X<150)=1001001501x2dx=100×1x100150=100(11501100)=13P(X<150)=100\int_{100}^{150}{\frac 1 {x^2}}dx=-100\times{\frac 1 x}|_{100}^{150}=-100({\frac 1 {150}}-{\frac 1 {100}})={\frac 1 3}


iii)iii)

 P(X<200X>150)=P(150<X<200)P(X>150)P(X<200|X>150)={\frac {P(150<X<200)} {P(X>150)}}

P(X>150)=1P(X<150)=113=23P(X>150)=1-P(X<150)=1-{1\over3}={\frac 2 3}

P(150<X<200)=1001502001x2dx=100×1x150200=100×(12001150)=16P(150<X<200)=100\int_{150}^{200}{\frac 1 {x^2}}dx=-100\times{\frac 1 x}|_{150}^{200}=-100\times({\frac 1 {200}}-{\frac 1 {150}})={\frac 1 6}

So,

 P(X<200X>150)=1623=14P(X<200|X>150)={\frac {{\frac 1 6}} {\frac 2 3}}={1\over4}


iv)iv)

Let F(x) be a cumulative distribution function, then F(x)=xf(t)dtF(x)=\int_{-\infty}^x f(t)dt.

So, F(x)=0F(x) = 0 when x<100x < 100 and,

F(x)=100100x1t2dt=100×1t100x=1100xF(x)=100∫ ^{ x}_ {100} ​{1\over t^ 2} ​ dt=−100\times{1\over t } ​ ∣ ^{ x}_ {100} ​ =1− {100\over x} ​ when x100x \ge100



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS