Question #295321

Using the number 1,2,3,4,5 and 6 as the element of the population



a. find the mean of the sample of size 3 without replacement


b.construct the sampling distribution of the sample mean



I. The mean


II.The variance


III. The standard deviation of the sampling of the sample means

1
Expert's answer
2022-02-09T13:05:15-0500

The number of possible samples is (Nn)=(63)=20\binom{N}{n}=\binom{6}{3}=20.

The possible samples with their means are given below.

a)a)

The sample means are derived from the formula,

xˉi=(xi)3\bar x_i={\sum(x_i)\over3}

Sample mean

(1,2,3) 2

(1,2,4) 2.33

(1,2,5) 2.67

(1,2,6) 3

(1,3,4) 2.67

(1,3,5) 3

(1,3,6) 3.33

(1,4,5) 3.33

(1,4,6) 3.67

(1,5,6) 4

(2,3,4) 3

(2,3,5) 3.33

(2,3,6) 3.67

(2,4,5) 3.67

(2,4,6) 4

(2,5,6) 4.33

(3,4,5) 4

(3,4,6) 4.33

(3,5,6) 4.67

(4,5,6) 5


b)b)

The sampling distribution is,

xˉi\bar x_i 2 2.33 2.67 3 3.33 3.67 4 4.33 4.67 5

p(xˉi)p(\bar x _i) 120{1\over20} 120{1\over20} 220{2\over20} 320{3\over20} 320{3\over20} 320{3\over20} 320{3\over20} 210{2\over10} 120{1\over20} 120{1\over20}



c)c)

The mean of the sampling distribution of the means is the population mean given as,

μxˉi=μ=1+2+3+4+5+66=216=3.5\mu_{\bar x_i}=\mu={1+2+3+4+5+6\over6}={21\over6}=3.5


d)d)

To find the variance of the sampling distribution of the means we first determine the the population variance σ2\sigma^2, given as,

σ2=(x2)((x))2NN=9173.56=2.91667\sigma^2={\sum (x^2)-{({\sum (x)})^2\over N }\over N}={91-73.5\over6}=2.91667

Now, the variance of the sampling distribution of the means is,

σxˉi2=σ2n=2.916673=0.9722\sigma^2_{\bar x_i}={\sigma^2\over n}={2.91667\over 3}=0.9722


e)e)

The standard deviation of the sampling of the sample means is,

σxˉi=σxˉi2=0.9722=0.9860\sigma_{\bar x_i}=\sqrt{\sigma^2_{\bar x_i}}=\sqrt{0.9722}=0.9860


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS