Let the probability of 1 be y. Let the probability of 2 be s. Then
y+s+s+s+s+s+s+1.5s=1y+1.5s=s+s
y+7.5s=1y=0.5s
y=1/16,s=1/8 There are 82=64 possible outcomes for X
1+1=2
1+2=2+1=3
1+3=2+2=3+1=4
1+4=2+3=3+2=4+1=5
1+5=2+4=3+3=4+2=5+1=6
1+6=2+5=3+4=4+3=5+2=6+1=7
1+7=2+6=3+5=4+4=5+3=6+2=7+1=8
1+8=2+7=3+6=4+5=5+4=6+3=7+2=8+1=9
2+8=3+7=4+6=5+5=6+4=7+3=8+2=10
3+8=4+7=5+6=6+5=7+4=8+3=11
4+8=5+7=6+6=7+5=8+4=12
5+8=6+7=7+6=8+5=13
6+8=7+7=8+6=14
7+8=8+7=15
8+8=16
P(X=2)=161(161)=2561
P(X=3)=161(81)+81(161)=641
P(X=4)=161(81)+81(81)+81(161)=321
P(X=5)=161(81)+2(81)(81)+81(161)=643
P(X=6)=161(81)+3(81)(81)+81(161)=161
P(X=7)=161(81)+4(81)(81)+81(161)=645
P(X=8)=161(81)+5(81)(81)+81(161)=323
P(X=9)=161(163)+6(81)(81)+163(161)=12815
P(X=10)=81(163)+5(81)(81)+163(81)=81
P(X=11)=81(163)+4(81)(81)+163(81)=647
P(X=12)=81(163)+3(81)(81)+163(81)=323
P(X=13)=81(163)+2(81)(81)+163(81)=645
P(X=14)=81(163)+(81)(81)+163(81)=161
P(X=15)=81(163)+163(81)=643
P(X=16)=163(163)=2569
a. Probability distribution of x
x2345678910111213141516p(x)1/2561/641/323/641/165/643/3215/1281/87/643/325/641/163/649/256
b.
mean=E(X)=2(2561)+3(641)+4(321)
+5(643)+6(161)+7(645)+8(323)
+9(12815)+10(81)+11(647)+12(323)
+13(645)+14(161)+15(643)+16(2561)
=9.375
c. Variance of x
mean=E(X2)=22(2561)+32(641)+42(321)
+52(643)+62(161)+72(645)+82(323)
+92(12815)+102(81)+112(647)+122(323)
+132(645)+142(161)+152(643)+162(2561)
=99.6328125
Var(X)=σ2=E(X2)−(E(X))2
=99.6328125−(9.375)2=11.7421875
Comments