Question #295284

There are two octahedral dice with faces marked 1 through 8. They are constructed such that the side 8 is 1.5 times as probable as the 2 through 7 and the sum of the probabilities of the 1 and the 8 equals that of the pairs on opposing faces. Let x be the sum of the faces when we roll the two dice.



Find the following:



a. Probability distribution of x



b. Mean of x



c. Variance of x

1
Expert's answer
2022-02-09T13:47:58-0500

Let the probability of 11 be y.y. Let the probability of 22 be s.s. Then


y+s+s+s+s+s+s+1.5s=1y+s+s+s+s+s+s+1.5s=1y+1.5s=s+sy+1.5s=s+s

y+7.5s=1y+7.5s=1y=0.5sy=0.5s

y=1/16,s=1/8y=1/16, s=1/8

There are 82=648^2=64 possible outcomes for XX


1+1=21+1=2

1+2=2+1=31+2=2+1=3

1+3=2+2=3+1=41+3=2+2=3+1=4


1+4=2+3=3+2=4+1=51+4=2+3=3+2=4+1=5

1+5=2+4=3+3=4+2=5+1=61+5=2+4=3+3=4+2=5+1=6

1+6=2+5=3+4=4+3=5+2=6+1=71+6=2+5=3+4=4+3=5+2=6+1=7

1+7=2+6=3+5=4+4=5+3=6+21+7=2+6=3+5=4+4=5+3=6+2=7+1=8=7+1=8

1+8=2+7=3+6=4+5=5+4=6+31+8=2+7=3+6=4+5=5+4=6+3=7+2=8+1=9=7+2=8+1=9

2+8=3+7=4+6=5+5=6+4=7+32+8=3+7=4+6=5+5=6+4=7+3=8+2=10=8+2=10

3+8=4+7=5+6=6+5=7+43+8=4+7=5+6=6+5=7+4=8+3=11=8+3=11


4+8=5+7=6+6=7+5=8+4=124+8=5+7=6+6=7+5=8+4=12

5+8=6+7=7+6=8+5=135+8=6+7=7+6=8+5=13

6+8=7+7=8+6=146+8=7+7=8+6=14

7+8=8+7=157+8=8+7=15


8+8=168+8=16

P(X=2)=116(116)=1256P(X=2)=\dfrac{1}{16}(\dfrac{1}{16})=\dfrac{1}{256}


P(X=3)=116(18)+18(116)=164P(X=3)=\dfrac{1}{16}(\dfrac{1}{8})+\dfrac{1}{8}(\dfrac{1}{16})=\dfrac{1}{64}

P(X=4)=116(18)+18(18)+18(116)=132P(X=4)=\dfrac{1}{16}(\dfrac{1}{8})+\dfrac{1}{8}(\dfrac{1}{8})+\dfrac{1}{8}(\dfrac{1}{16})=\dfrac{1}{32}

P(X=5)=116(18)+2(18)(18)+18(116)=364P(X=5)=\dfrac{1}{16}(\dfrac{1}{8})+2(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{1}{8}(\dfrac{1}{16})=\dfrac{3}{64}

P(X=6)=116(18)+3(18)(18)+18(116)=116P(X=6)=\dfrac{1}{16}(\dfrac{1}{8})+3(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{1}{8}(\dfrac{1}{16})=\dfrac{1}{16}

P(X=7)=116(18)+4(18)(18)+18(116)=564P(X=7)=\dfrac{1}{16}(\dfrac{1}{8})+4(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{1}{8}(\dfrac{1}{16})=\dfrac{5}{64}

P(X=8)=116(18)+5(18)(18)+18(116)=332P(X=8)=\dfrac{1}{16}(\dfrac{1}{8})+5(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{1}{8}(\dfrac{1}{16})=\dfrac{3}{32}

P(X=9)=116(316)+6(18)(18)+316(116)=15128P(X=9)=\dfrac{1}{16}(\dfrac{3}{16})+6(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{3}{16}(\dfrac{1}{16})=\dfrac{15}{128}

P(X=10)=18(316)+5(18)(18)+316(18)=18P(X=10)=\dfrac{1}{8}(\dfrac{3}{16})+5(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{3}{16}(\dfrac{1}{8})=\dfrac{1}{8}

P(X=11)=18(316)+4(18)(18)+316(18)=764P(X=11)=\dfrac{1}{8}(\dfrac{3}{16})+4(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{3}{16}(\dfrac{1}{8})=\dfrac{7}{64}

P(X=12)=18(316)+3(18)(18)+316(18)=332P(X=12)=\dfrac{1}{8}(\dfrac{3}{16})+3(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{3}{16}(\dfrac{1}{8})=\dfrac{3}{32}

P(X=13)=18(316)+2(18)(18)+316(18)=564P(X=13)=\dfrac{1}{8}(\dfrac{3}{16})+2(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{3}{16}(\dfrac{1}{8})=\dfrac{5}{64}

P(X=14)=18(316)+(18)(18)+316(18)=116P(X=14)=\dfrac{1}{8}(\dfrac{3}{16})+(\dfrac{1}{8})(\dfrac{1}{8})+\dfrac{3}{16}(\dfrac{1}{8})=\dfrac{1}{16}

P(X=15)=18(316)+316(18)=364P(X=15)=\dfrac{1}{8}(\dfrac{3}{16})+\dfrac{3}{16}(\dfrac{1}{8})=\dfrac{3}{64}

P(X=16)=316(316)=9256P(X=16)=\dfrac{3}{16}(\dfrac{3}{16})=\dfrac{9}{256}

a. Probability distribution of x

xp(x)21/25631/6441/3253/6461/1675/6483/32915/128101/8117/64123/32135/64141/16153/64169/256\def\arraystretch{1.5} \begin{array}{c:c} x & p(x) \\ \hline 2& 1/256\\ \hdashline 3& 1/64\\ \hdashline 4& 1/32\\ \hdashline 5& 3/64\\ \hdashline 6& 1/16\\ \hdashline 7& 5/64\\ \hdashline 8& 3/32\\ \hdashline 9& 15/128\\ \hdashline 10 &1/8\\ \hdashline 11& 7/64\\ \hdashline 12& 3/32\\ \hdashline 13& 5/64\\ \hdashline 14& 1/16\\ \hdashline 15& 3/64\\ \hdashline 16& 9/256\\ \hdashline \end{array}


b.

mean=E(X)=2(1256)+3(164)+4(132)mean=E(X)=2(\dfrac{1}{256})+3(\dfrac{1}{64})+4(\dfrac{1}{32})

+5(364)+6(116)+7(564)+8(332)+5(\dfrac{3}{64})+6(\dfrac{1}{16})+7(\dfrac{5}{64})+8(\dfrac{3}{32})

+9(15128)+10(18)+11(764)+12(332)+9(\dfrac{15}{128})+10(\dfrac{1}{8})+11(\dfrac{7}{64})+12(\dfrac{3}{32})

+13(564)+14(116)+15(364)+16(1256)+13(\dfrac{5}{64})+14(\dfrac{1}{16})+15(\dfrac{3}{64})+16(\dfrac{1}{256})

=9.375=9.375

c. Variance of x


mean=E(X2)=22(1256)+32(164)+42(132)mean=E(X^2 )=2^2(\dfrac{1}{256})+3^2(\dfrac{1}{64})+4^2(\dfrac{1}{32})

+52(364)+62(116)+72(564)+82(332)+5^2(\dfrac{3}{64})+6^2(\dfrac{1}{16})+7^2(\dfrac{5}{64})+8^2(\dfrac{3}{32})

+92(15128)+102(18)+112(764)+122(332)+9^2(\dfrac{15}{128})+10^2(\dfrac{1}{8})+11^2(\dfrac{7}{64})+12^2(\dfrac{3}{32})

+132(564)+142(116)+152(364)+162(1256)+13^2(\dfrac{5}{64})+14^2(\dfrac{1}{16})+15^2(\dfrac{3}{64})+16^2(\dfrac{1}{256})

=99.6328125=99.6328125

Var(X)=σ2=E(X2)(E(X))2Var(X)=\sigma^2=E(X^2)-(E(X))^2

=99.6328125(9.375)2=11.7421875=99.6328125-(9.375)^2=11.7421875


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS