Solution;
N = 16 N=16 N = 16
X ˉ = 53 \bar{X}=53 X ˉ = 53
μ = 56 \mu=56 μ = 56
S = ∑ ( X − X ˉ ) N − 1 S=\sqrt{\frac{\sum(X-\bar{X})}{N-1}} S = N − 1 ∑ ( X − X ˉ )
S = 150 15 = 10 = 3.162 S=\sqrt{\frac{150}{15}}=\sqrt{10}=3.162 S = 15 150 = 10 = 3.162
t computed is;
t = X ˉ − μ S N t=\frac{\bar{X}-\mu}{S}\sqrt{N} t = S X ˉ − μ N
t = ∣ 53 − 56 ∣ 3.162 16 = 3.795 t=\frac{|53-56|}{3.162}\sqrt{16}=3.795 t = 3.162 ∣53 − 56∣ 16 = 3.795
t critical is;
df=16−1=15
α = 0.05 \alpha=0.05 α = 0.05
t c r i t i c a l = 2.131 t_{critical}=2.131 t cr i t i c a l = 2.131
Hence;
Since t c o m p u t e d > t c r i t i c a l t_{computed}>t_{critical} t co m p u t e d > t cr i t i c a l ,the result of the experiment does not support the hypothesis that the sample is taken from the universe having a mean 56.
95% confidence limit ;
X ˉ − + S N t 0.05 = 53 − + 3.162 16 × 2.131 \bar{X}\displaystyle _-^+\frac{S}{\sqrt{N}}t_{0.05}=53\displaystyle_-^+\frac{3.162}{\sqrt{16}}×2.131 X ˉ − + N S t 0.05 = 53 − + 16 3.162 × 2.131
53 − + 1.6846 53\displaystyle_-^+1.6846 53 − + 1.6846
51.316 < X ˉ < 54.684 51.316<\bar{X}<54.684 51.316 < X ˉ < 54.684
99% confidence limit;
X ˉ − + S N t 0.01 = 53 − + 3.162 16 × 2.947 \bar{X}\displaystyle _-^+\frac{S}{\sqrt{N}}t_{0.01}=53\displaystyle_-^+\frac{3.162}{\sqrt{16}}×2.947 X ˉ − + N S t 0.01 = 53 − + 16 3.162 × 2.947
53 − + 2.330 53\displaystyle_-^+2.330 53 − + 2.330
50.67 < X ˉ < 55.33 50.67<\bar{X}<55.33 50.67 < X ˉ < 55.33
Comments