When rolling two dice, there are "6^2=36" outcomes for scores
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c}\n & 1 & 2 & 3 & 4 & 5 & 6 \\\\ \\hline\n 1 & 1+1 & 1+2 & 1+3 & 1+4 & 1+5 & 1+6 \\\\\n \\hdashline\n 2 & 2+1 & 2+2 & 2+3 & 2+4 & 2+5 & 2+6 \\\\\n \\hdashline\n 3 & 3+1 & 3+2 & 3+3 & 3+4 & 3+5 & 3+6 \\\\\n \\hdashline\n 4 & 4+1 & 4+2 & 4+3 & 4+4 & 4+5 & 4+6 \\\\\n \\hdashline\n 5 & 5+1 & 5+2 & 5+3 & 5+4 & 5+5 & 5+6 \\\\\n \\hdashline\n 6 & 6+1 & 6+2 & 6+3 & 6+4 & 6+5 & 6+6 \\\\\n \\hdashline\n\\end{array}"
"1+3=2+2=3+1=4"
"2+6=3+5=4+4=5+3=6+2=8"
"6+6=12" Let "X=" is the sum of the scores on the two dice
"P(X \\text{is divided by 4})=\\dfrac{9}{36}=\\dfrac{1}{4}"
Comments
Leave a comment