Question #292096

 Let W be a random variable giving the number of heads minus the number of tails  

  in three tosses of a coin. List the elements of the sample space S for the three 

  tosses of the coin and to each sample point assign a value w of W.




1
Expert's answer
2022-01-31T16:52:19-0500

Solution:

The sample space S for the three tosses of the coin is:



S={HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}S=\{{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT} \}

Let WW be a random variable giving the number of heads minus the number of tails in three tosses of a coin, we assign a value of ω\omega of WW to each sample point in the following way: 



Sample pointsωHHH3HHT1HTH1HTT1THH1THT1TTH1TTT3\begin{array}{cc} \text{Sample points} & & \omega \\ HHH & & 3 \\HHT & & 1 \\HTH & & 1 \\HTT & & -1 \\THH & & 1 \\THT & & -1 \\TTH & & -1\\ TTT & & -3 \end{array}

The sample space for WW is



SW={3,1,1,3}S_W=\{{-3, -1, 1, 3} \}

corresponding to 3T,1H2T,2H1T,3T,1H2T,2H1T, and 3H3H respectively.



P(0 heads & 3 tails)=(30)(12)0(12)3=18P(0\ heads\ \&\ 3\ tails)=\binom{3}{0}({1 \over 2})^0({1 \over 2})^3={1 \over 8}P(1 head & 2 tails)=(31)(12)1(12)2=38P(1\ head\ \&\ 2\ tails)=\binom{3}{1}({1 \over 2})^1({1 \over 2})^2={3 \over 8}P(2 heads & 1 tail)=(32)(12)2(12)1=38P(2\ heads\ \&\ 1\ tail)=\binom{3}{2}({1 \over 2})^2({1 \over 2})^1={3 \over 8}P(3 heads & 0 tails)=(33)(12)3(12)0=18P(3\ heads\ \&\ 0\ tails)=\binom{3}{3}({1 \over 2})^3({1 \over 2})^0={1 \over 8}P(W=3)=18P(W=-3)={1 \over 8}P(W=1)=38P(W=-1)={3 \over 8}P(W=1)=38P(W=1)={3\over 8}




P(W=3)=18P(W=3)={1 \over 8}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS