(i) Any valid PDF must integrates to 1, so
∫−∞+∞f(x)dx=c∫100+∞x21dx=−c∗x1∣x=100x=+∞=100c=1⟹c=100
(ii) P(X<150)=100∫100150x21dx=−100∗x1∣x=100x=150=−100(1501−1001)=31
(iii) P(X<200∣X>150)=P(X>150)P(150<X<200)
P(X>150)=1−P(X<150)=32
P(150<X<200)=100∫150200x21dx=−100∗x1∣x=150x=200=−100∗(2001−1501)=61
So, P(X<200∣X>150)=3261=0.25
(iv) Let F(x) be a cumulative distribution function, then F(x)=∫−∞xf(t)dt. So,
F(x) = 0 when x < 100
F(x)=100∫100xt21dt=−100∗t1∣t=100t=x=1−x100 when x ≥ 100
Comments