Question #291723

1.    The manufacturer of a certain kind of light bulb claims that the lifetime of the bulb in hours, X can be modeled as a random quantity with PDF.

              fx(x)= {0, x<100

c/x2, x>=100,

 

where c is a constant.

i.   What value must c take in order for this to define a valid PDF?

ii.  What is the probability that the bulb lasts no longer than 150 hours?

iii. Given that a bulb lasts longer than 150 hours, what is the probability that it lasts longer than 200 hours?

iv. Evaluate the cumulative distribution function.


1
Expert's answer
2022-02-04T13:46:47-0500

(i) Any valid PDF must integrates to 1, so

+f(x)dx=c100+1x2dx=c1xx=100x=+=c100=1    c=100\int_{-\infty}^{+\infty} f(x)dx=c\int_{100}^{+\infty}{\frac 1 {x^2}}dx=-c*{\frac 1 x}|_{x=100}^{x=+\infty}={\frac c {100}}=1\implies c=100


(ii) P(X<150)=1001001501x2dx=1001xx=100x=150=100(11501100)=13P(X<150)=100\int_{100}^{150}{\frac 1 {x^2}}dx=-100*{\frac 1 x}|_{x=100}^{x=150}=-100({\frac 1 {150}}-{\frac 1 {100}})={\frac 1 3}


(iii) P(X<200X>150)=P(150<X<200)P(X>150)P(X<200|X>150)={\frac {P(150<X<200)} {P(X>150)}}

P(X>150)=1P(X<150)=23P(X>150)=1-P(X<150)={\frac 2 3}

P(150<X<200)=1001502001x2dx=1001xx=150x=200=100(12001150)=16P(150<X<200)=100\int_{150}^{200}{\frac 1 {x^2}}dx=-100*{\frac 1 x}|_{x=150}^{x=200}=-100*({\frac 1 {200}}-{\frac 1 {150}})={\frac 1 6}

So, P(X<200X>150)=1623=0.25P(X<200|X>150)={\frac {{\frac 1 6}} {\frac 2 3}}=0.25


(iv) Let F(x) be a cumulative distribution function, then F(x)=xf(t)dtF(x)=\int_{-\infty}^x f(t)dt. So,

F(x) = 0 when x < 100

F(x)=100100x1t2dt=1001tt=100t=x=1100xF(x)=100\int_{100}^x {\frac 1 {t^2}}dt=-100*{\frac 1 t}|_{t=100}^{t=x}=1-{\frac {100} x} when x ≥ 100


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS