Question #291711

1.    Consider the random quantity X, with PDF

   fx(x) = {4/3(2x-x^2), 0<x<2
            0,         otherwise. 

 

i.                  Check that this is a valid PDF (it integrates to 1).

ii.                Calculate the expectation and variance of X.

iii.              Evaluate the cumulative distribution function.

iv.               What is the median of this distribution? 



1
Expert's answer
2022-02-21T15:50:15-0500

Given that,

f(x)=34(2xx2),0<x<20,elsewheref(x)={3\over4}(2x-x^2), 0\lt x\lt 2\\0,elsewhere


a)a) verify that it is a pdf.

02f(x)dx=0234(2xx2)dx=34(x2x33)02=34(483)=34×43=1.0\displaystyle\int^2_0f(x)dx=\displaystyle\int^2_0{3\over4}(2x-x^2)dx ={3\over4}(x^2-{x^3\over3})|^2_0={3\over4}(4-{8\over3})={3\over4}\times{4\over3}=1.0

Therefore, it is a valid pdf.


b)b)

i)i) Expectation of XX

It is given as,

E(x)=02xf(x)dx=0234(2x2x3)dx=34(23x3x44)02=1E(x)=\displaystyle\int^2_0 xf(x)dx=\displaystyle\int^2_0{3\over4}(2x^2-x^3)dx={3\over4}({2\over3}x^3-{x^4\over4})|^2_0=1

ii)ii) Variance of XX

The variance of XX is given as,

Var(x)=E(x2)(E(x))2Var(x)=E(x^2)-(E(x))^2

We determine,

E(X2)=02x2f(x)dx=0234(2x3x4)dx=34(x42x55)02=65E(X^2)=\displaystyle\int^2_0 x^2f(x)dx=\displaystyle\int^2_0{3\over4}(2x^3-x^4)dx={3\over4}({x^4\over2}-{x^5\over5})|^2_0={6\over5}

Therefore,

var(x)=6512=15var(x)={6\over5}-1^2={1\over5}


c)c)

The cumulative distribution for XX is,

F(x)=0xf(u)du=0x34(2uu2)du=34(u2u33)0x=34(x2x33)F(x)=\displaystyle\int^x_0f(u)du=\displaystyle\int^x_0{3\over4}(2u-u^2)du={3\over4}(u^2-{u^3\over3})|^x_0={3\over4}(x^2-{x^3\over3})

It can be written as,

F(x)=34(x2x33),0<x<20,elsewhereF(x)={3\over4}(x^2-{x^3\over3}), 0\lt x\lt 2\\0,elsewhere


d)d)

To find the median, we find a value yy such that,

0yf(x)dx=0.5\displaystyle\int^y_0f(x)dx=0.5

So,

0y34(2xx2)dx=34(x2x33)0y=34(y2y33)=0.5\displaystyle\int^y_0{3\over4}(2x-x^2)dx={3\over4}(x^2-{x^3\over3})|^y_0={3\over4}(y^2-{y^3\over3})=0.5

We need to solve for the value of yy

34(y2y33)=0.5    (y2y33)=23    y2(1y3)=23    y=0.82 or 1{3\over4}(y^2-{y^3\over3})=0.5\implies (y^2-{y^3\over3})={2\over3}\implies y^2(1-{y\over3})={2\over3}\implies y=0.82 \space or\space 1

The value of the median must be around the middle of the range (0,2). So the most appropriate value of the median is y=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS