1. Consider the random quantity X, with PDF
fx(x) = {4/3(2x-x^2), 0<x<2
0, otherwise.
i. Check that this is a valid PDF (it integrates to 1).
ii. Calculate the expectation and variance of X.
iii. Evaluate the cumulative distribution function.
iv. What is the median of this distribution?
Given that,
"f(x)={3\\over4}(2x-x^2), 0\\lt x\\lt 2\\\\0,elsewhere"
"a)" verify that it is a pdf.
"\\displaystyle\\int^2_0f(x)dx=\\displaystyle\\int^2_0{3\\over4}(2x-x^2)dx ={3\\over4}(x^2-{x^3\\over3})|^2_0={3\\over4}(4-{8\\over3})={3\\over4}\\times{4\\over3}=1.0"
Therefore, it is a valid pdf.
"b)"
"i)" Expectation of "X"
It is given as,
"E(x)=\\displaystyle\\int^2_0 xf(x)dx=\\displaystyle\\int^2_0{3\\over4}(2x^2-x^3)dx={3\\over4}({2\\over3}x^3-{x^4\\over4})|^2_0=1"
"ii)" Variance of "X"
The variance of "X" is given as,
"Var(x)=E(x^2)-(E(x))^2"
We determine,
"E(X^2)=\\displaystyle\\int^2_0 x^2f(x)dx=\\displaystyle\\int^2_0{3\\over4}(2x^3-x^4)dx={3\\over4}({x^4\\over2}-{x^5\\over5})|^2_0={6\\over5}"
Therefore,
"var(x)={6\\over5}-1^2={1\\over5}"
"c)"
The cumulative distribution for "X" is,
"F(x)=\\displaystyle\\int^x_0f(u)du=\\displaystyle\\int^x_0{3\\over4}(2u-u^2)du={3\\over4}(u^2-{u^3\\over3})|^x_0={3\\over4}(x^2-{x^3\\over3})"
It can be written as,
"F(x)={3\\over4}(x^2-{x^3\\over3}), 0\\lt x\\lt 2\\\\0,elsewhere"
"d)"
To find the median, we find a value "y" such that,
"\\displaystyle\\int^y_0f(x)dx=0.5"
So,
"\\displaystyle\\int^y_0{3\\over4}(2x-x^2)dx={3\\over4}(x^2-{x^3\\over3})|^y_0={3\\over4}(y^2-{y^3\\over3})=0.5"
We need to solve for the value of "y"
"{3\\over4}(y^2-{y^3\\over3})=0.5\\implies (y^2-{y^3\\over3})={2\\over3}\\implies y^2(1-{y\\over3})={2\\over3}\\implies y=0.82 \\space or\\space 1"
The value of the median must be around the middle of the range (0,2). So the most appropriate value of the median is y=1
Comments
Leave a comment