Given a standard normal distribution with mean =78 and standard deviation = 28, find P(85 < X < 102)
Given: "\\mu=78,\\sigma=28"
"P(85 < X < 102)=P(X<102)-P(X<85)"
Now,
"\\begin{aligned}\n& P[x <102] \\\\\n=& P\\left[z <\\frac{x-\\mu}{\\sigma}\\right] \\\\\n=& P\\left[z <\\frac{102-78}{28}\\right] \\\\\n=& P[z <0.857] \\\\\n=& 0.80428 \\\\\n\\end{aligned}"
and
"\\begin{aligned}\n& P[x <85] \\\\\n=& P\\left[z <\\frac{x-\\mu}{\\sigma}\\right] \\\\\n=& P\\left[z <\\frac{85-78}{28}\\right] \\\\\n=& P[z <0.25] \\\\\n=& 0.59871 \\\\\n\\end{aligned}"
So,
"P(85 < X < 102)=P(X<102)-P(X<85)=0.80428-0.59871=0.20557"
Comments
Leave a comment