Answer to Question #289095 in Statistics and Probability for jea

Question #289095

2.   The joint density function for random variables X, Y, and Z is

f (x,y,z) = {Cxyz, if 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2

0, otherwise


a)   Find the value of C.

b) Find P(X ≤ 1,Y ≤ 1, Z ≤ 1).


1
Expert's answer
2022-01-24T17:02:07-0500

Here, f(x,y,z)f(x,y,z) is a probability density function.

So,

a) 020202Cxyzdzdydx=1\int_0^2\int_0^2\int_0^2 Cxyzdzdydx=1

    \implies 0202{Cxyz²2}02dydx=1\int_0^2\int_0^2\left\{\frac{Cxyz²}{2}\right\}_0^2dydx=1


    \implies 02022Cxydydx=1\int_0^2\int_0^22Cxydydx=1


    \implies 02{Cxy²}02dx=1\int_0^2\left\{Cxy²\right\}_0^2dx=1


    \implies 024Cxdx=1\int_0^24Cxdx=1


    \implies {4Cx²2}02=1\left\{\frac{4Cx²}{2}\right\}_0^2=1


    \implies {2Cx²}02=1\left\{2Cx²\right\}_0^2=1


    \implies 2C(2)²2C(0)²=12C(2)²-2C(0)²=1


    \implies 8C=18C=1


    \implies C=18C=\frac{1}{8}


b) P(X1,Y1,Z1)P(X≤1,Y≤1,Z≤1)

=010101xyz8dzdydx=\int_0^1\int_0^1\int_0^1\frac{xyz}{8}dzdydx


=0101{xyz²16}01dydx=\int_0^1\int_0^1\left\{\frac{xyz²}{16}\right\}_0^1dydx


=0101xy16dydx=\int_0^1\int_0^1\frac{xy}{16}dydx


=01{xy²32}01dx=\int_0^1\left\{\frac{xy²}{32}\right\}_0^1dx


=01x32dx=\int_0^1\frac{x}{32}dx


={x²64}01=164=\left\{\frac{x²}{64}\right\}_0^1=\frac{1}{64}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment