For plant 1,
n 1 = 50 x 1 = 8 p 1 ^ = x 1 n 1 = 8 50 = 4 25 = 0.16 n_1=50\\
x_1=8\\
\hat{p_1}={x_1\over n_1}={8\over50}={4\over25}=0.16 n 1 = 50 x 1 = 8 p 1 ^ = n 1 x 1 = 50 8 = 25 4 = 0.16
For plant 2,
n 2 = 50 x 2 = 12 p 2 ^ = x 2 n 2 = 12 50 = 6 25 = 0.24 n_2=50\\
x_2=12\\
\hat{p_2}={x_2\over n_2}={12\over50}={6\over25}=0.24 n 2 = 50 x 2 = 12 p 2 ^ = n 2 x 2 = 50 12 = 25 6 = 0.24
α = 0.05 q 1 ^ = 1 − p 1 ^ = 1 − 0.16 = 0.84 q 2 ^ = 1 − p 2 ^ = 1 − 0.24 = 0.76 \alpha=0.05\\
\hat{q_1}=1-\hat{p_1}=1-0.16=0.84\\
\hat{q_2}=1-\hat{p_2}=1-0.24=0.76 α = 0.05 q 1 ^ = 1 − p 1 ^ = 1 − 0.16 = 0.84 q 2 ^ = 1 − p 2 ^ = 1 − 0.24 = 0.76
A 95% confidence interval for the difference in proportion of items is given by,
C . I = ( p 1 ^ − p 2 ^ ) ± Z α 2 p 1 ^ ( q 1 ^ ) n 1 + p 2 ( q 2 ^ ) n 2 C.I=(\hat{p_1}-\hat{p_2})\pm Z_{\alpha\over2}\sqrt{{\hat{p_1}(\hat{q_1})\over n_1}+{p_2(\hat{q_2})\over n_2}} C . I = ( p 1 ^ − p 2 ^ ) ± Z 2 α n 1 p 1 ^ ( q 1 ^ ) + n 2 p 2 ( q 2 ^ )
Where,
Z α 2 = Z 0.05 2 = Z 0.025 = 1.96 Z_{\alpha\over2}=Z_{0.05\over2}=Z_{0.025}=1.96 Z 2 α = Z 2 0.05 = Z 0.025 = 1.96
Therefore,
C . I = ( 0.16 − 0.24 ) ± 1.96 0.16 × 0.84 50 + 0.24 × 0.76 50 C . I = − 0.08 ± 1.96 0.006136 C . I = − 0.08 ± 0.153531943 C.I=(0.16-0.24)\pm1.96\sqrt{{0.16\times0.84\over50}+{0.24\times0.76\over50}}\\
C.I=-0.08\pm1.96\sqrt{0.006136}\\
C.I=-0.08\pm0.153531943 C . I = ( 0.16 − 0.24 ) ± 1.96 50 0.16 × 0.84 + 50 0.24 × 0.76 C . I = − 0.08 ± 1.96 0.006136 C . I = − 0.08 ± 0.153531943
Therefore, a 95% confidence interval for the difference in the proportions of items produced by the two plants is,
( − 0.2335 , 0.0735 ) (-0.2335, 0.0735) ( − 0.2335 , 0.0735 )
Comments
Leave a comment