Mean
μ = 2 + 4 + 6 + 8 + 10 + 12 6 = 7 \mu=\dfrac{2+4+6+8+10+12}{6}=7 μ = 6 2 + 4 + 6 + 8 + 10 + 12 = 7 Variance
σ 2 = 1 6 ( ( 2 − 7 ) 2 + ( 4 − 7 ) 2 + ( 6 − 7 ) 2 \sigma^2=\dfrac{1}{6}\big((2-7)^2+(4-7)^2+(6-7)^2 σ 2 = 6 1 ( ( 2 − 7 ) 2 + ( 4 − 7 ) 2 + ( 6 − 7 ) 2 + ( 8 − 7 ) 2 + ( 10 − 7 ) 2 + ( 12 − 7 ) 2 ) +(8-7)^2+(10-7)^2+(12-7)^2\big) + ( 8 − 7 ) 2 + ( 10 − 7 ) 2 + ( 12 − 7 ) 2 ) = 70 6 = 35 3 =\dfrac{70}{6}=\dfrac{35}{3} = 6 70 = 3 35
Standard deviation
σ = σ 2 = 35 3 ≈ 3.415650 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{35}{3}}\approx 3.415650 σ = σ 2 = 3 35 ≈ 3.415650
We have population values 2 , 4 , 6 , 8 , 10 , 12 2,4,6,8,10,12 2 , 4 , 6 , 8 , 10 , 12 population size N = 6 N=6 N = 6 and sample size n = 3. n=3. n = 3. Thus, the number of possible samples which can be drawn without replacement is
( 6 3 ) = 6 ! 3 ! ( 6 − 3 ) ! = 20 \dbinom{6}{3}=\dfrac{6!}{3!(6-3)!}=20 ( 3 6 ) = 3 ! ( 6 − 3 )! 6 ! = 20 S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 2 , 4 , 6 4 2 2 , 4 , 8 14 / 3 3 2 , 4 , 10 16 / 3 4 2 , 4 , 12 6 5 2 , 6 , 8 16 / 3 6 2 , 6 , 10 6 7 2 , 6 , 12 20 / 3 8 2 , 8 , 10 20 / 3 9 2 , 8 , 12 22 / 3 10 2 , 10 , 12 8 11 4 , 6 , 8 6 12 4 , 6 , 10 20 / 3 13 4 , 6 , 12 22 / 3 14 4 , 8 , 10 22 / 3 15 4 , 8 , 12 8 16 4 , 10 , 12 26 / 3 17 6 , 8 , 10 8 18 6 , 8 , 12 26 / 3 19 6 , 10 , 12 28 / 3 20 8 , 10 , 12 10 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 2,4,6 & 4 \\
\hdashline
2 & 2,4,8 & 14/3 \\
\hdashline
3 & 2,4,10 & 16/3 \\
\hdashline
4 & 2,4,12 & 6 \\
\hdashline
5 & 2,6,8 & 16/3 \\
\hdashline
6 & 2,6,10 & 6 \\
\hdashline
7 & 2,6,12 & 20/3 \\
\hdashline
8 & 2,8,10 & 20/3 \\
\hdashline
9 & 2,8,12 & 22/3 \\
\hdashline
10 & 2,10,12 & 8 \\
\hdashline
11 & 4,6,8 & 6 \\
\hdashline
12 & 4,6,10 & 20/3 \\
\hdashline
13 & 4,6,12 & 22/3 \\
\hdashline
14 & 4,8,10 & 22/3 \\
\hdashline
15 & 4,8,12 & 8 \\
\hdashline
16 & 4,10,12 & 26/3 \\
\hdashline
17 & 6,8,10 & 8 \\
\hdashline
18 & 6,8,12 & 26/3 \\
\hdashline
19 & 6,10,12 & 28/3 \\
\hdashline
20 & 8,10,12 & 10 \\
\hdashline
\end{array} S am pl e N o . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S am pl e v a l u es 2 , 4 , 6 2 , 4 , 8 2 , 4 , 10 2 , 4 , 12 2 , 6 , 8 2 , 6 , 10 2 , 6 , 12 2 , 8 , 10 2 , 8 , 12 2 , 10 , 12 4 , 6 , 8 4 , 6 , 10 4 , 6 , 12 4 , 8 , 10 4 , 8 , 12 4 , 10 , 12 6 , 8 , 10 6 , 8 , 12 6 , 10 , 12 8 , 10 , 12 S am pl e m e an ( X ˉ ) 4 14/3 16/3 6 16/3 6 20/3 20/3 22/3 8 6 20/3 22/3 22/3 8 26/3 8 26/3 28/3 10
The sampling distribution of the sample means.
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 4 1 1 / 20 12 / 60 144 / 180 14 / 3 1 1 / 20 14 / 60 196 / 180 16 / 3 2 2 / 20 32 / 60 512 / 180 6 3 3 / 20 54 / 60 972 / 180 20 / 3 3 3 / 20 60 / 60 1200 / 180 22 / 3 3 3 / 20 66 / 60 1452 / 180 8 3 3 / 20 72 / 60 1728 / 180 26 / 3 2 2 / 20 52 / 60 1352 / 180 28 / 3 1 1 / 20 28 / 60 784 / 180 10 1 1 / 20 30 / 60 900 / 180 T o t a l 20 1 420 / 60 9240 / 180 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
4 & 1& 1/20 & 12/60 & 144/180 \\
\hdashline
14/3 & 1 & 1/20 & 14/60 & 196/180 \\
\hdashline
16/3 & 2 & 2/20 & 32/60 & 512/180 \\
\hdashline
6 & 3 & 3/20 & 54/60 & 972/180\\
\hdashline
20/3 & 3 & 3/20 & 60/60 & 1200/180 \\
\hdashline
22/3 & 3 & 3/20 & 66/60 & 1452/180 \\
\hdashline
8 & 3 & 3/20 & 72/60 & 1728/180 \\
\hdashline
26/3 & 2 & 2/20 & 52/60 & 1352/180 \\
\hdashline
28/3 & 1 & 1/20 & 28/60 & 784/180 \\
\hdashline
10 & 1 & 1/20 & 30/60 & 900/180 \\
\hdashline
Total & 20 & 1 & 420/60 & 9240/180 \\ \hline
\end{array} X ˉ 4 14/3 16/3 6 20/3 22/3 8 26/3 28/3 10 T o t a l f 1 1 2 3 3 3 3 2 1 1 20 f ( X ˉ ) 1/20 1/20 2/20 3/20 3/20 3/20 3/20 2/20 1/20 1/20 1 X ˉ f ( X ˉ ) 12/60 14/60 32/60 54/60 60/60 66/60 72/60 52/60 28/60 30/60 420/60 X ˉ 2 f ( X ˉ ) 144/180 196/180 512/180 972/180 1200/180 1452/180 1728/180 1352/180 784/180 900/180 9240/180
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 420 60 = 7 E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{420}{60}=7 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 60 420 = 7 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = μ x ˉ = 7 = μ E(\bar{X})=\mu_{\bar{x}}=7=\mu E ( X ˉ ) = μ x ˉ = 7 = μ
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 = 9240 180 − ( 7 ) 2 = 7 3 =\dfrac{9240}{180}-(7)^2=\dfrac{7}{3} = 180 9240 − ( 7 ) 2 = 3 7 σ X ˉ = V a r ( X ˉ ) = 7 3 ≈ 1.527525 \sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\sqrt{\dfrac{7}{3}}\approx1.527525 σ X ˉ = Va r ( X ˉ ) = 3 7 ≈ 1.527525 Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 35 3 ( 3 ) ( 6 − 3 6 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{35}{3(3)}(\dfrac{6-3}{6-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 3 ( 3 ) 35 ( 6 − 1 6 − 3 ) = 7 3 , T r u e =\dfrac{7}{3}, True = 3 7 , T r u e
Comments