Question #288458

Draw all possible distinct sample of size 3 from the population 2 ,4, 6, 8, 10, 12,




Construct the sampling distribution of the sample mean X and calculate it's means and variance meauX and sigma X

1
Expert's answer
2022-01-18T18:29:26-0500

Mean


μ=2+4+6+8+10+126=7\mu=\dfrac{2+4+6+8+10+12}{6}=7

Variance


σ2=16((27)2+(47)2+(67)2\sigma^2=\dfrac{1}{6}\big((2-7)^2+(4-7)^2+(6-7)^2+(87)2+(107)2+(127)2)+(8-7)^2+(10-7)^2+(12-7)^2\big)=706=353=\dfrac{70}{6}=\dfrac{35}{3}

Standard deviation


σ=σ2=3533.415650\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{35}{3}}\approx 3.415650



We have population values 2,4,6,8,10,122,4,6,8,10,12 population size N=6N=6 and sample size n=3.n=3. Thus, the number of possible samples which can be drawn without replacement is


(63)=6!3!(63)!=20\dbinom{6}{3}=\dfrac{6!}{3!(6-3)!}=20SampleSampleSample meanNo.values(Xˉ)12,4,6422,4,814/332,4,1016/342,4,12652,6,816/362,6,10672,6,1220/382,8,1020/392,8,1222/3102,10,128114,6,86124,6,1020/3134,6,1222/3144,8,1022/3154,8,128164,10,1226/3176,8,108186,8,1226/3196,10,1228/3208,10,1210\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,4,6 & 4 \\ \hdashline 2 & 2,4,8 & 14/3 \\ \hdashline 3 & 2,4,10 & 16/3 \\ \hdashline 4 & 2,4,12 & 6 \\ \hdashline 5 & 2,6,8 & 16/3 \\ \hdashline 6 & 2,6,10 & 6 \\ \hdashline 7 & 2,6,12 & 20/3 \\ \hdashline 8 & 2,8,10 & 20/3 \\ \hdashline 9 & 2,8,12 & 22/3 \\ \hdashline 10 & 2,10,12 & 8 \\ \hdashline 11 & 4,6,8 & 6 \\ \hdashline 12 & 4,6,10 & 20/3 \\ \hdashline 13 & 4,6,12 & 22/3 \\ \hdashline 14 & 4,8,10 & 22/3 \\ \hdashline 15 & 4,8,12 & 8 \\ \hdashline 16 & 4,10,12 & 26/3 \\ \hdashline 17 & 6,8,10 & 8 \\ \hdashline 18 & 6,8,12 & 26/3 \\ \hdashline 19 & 6,10,12 & 28/3 \\ \hdashline 20 & 8,10,12 & 10 \\ \hdashline \end{array}



The sampling distribution of the sample means.


Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)411/2012/60144/18014/311/2014/60196/18016/322/2032/60512/180633/2054/60972/18020/333/2060/601200/18022/333/2066/601452/180833/2072/601728/18026/322/2052/601352/18028/311/2028/60784/1801011/2030/60900/180Total201420/609240/180\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 4 & 1& 1/20 & 12/60 & 144/180 \\ \hdashline 14/3 & 1 & 1/20 & 14/60 & 196/180 \\ \hdashline 16/3 & 2 & 2/20 & 32/60 & 512/180 \\ \hdashline 6 & 3 & 3/20 & 54/60 & 972/180\\ \hdashline 20/3 & 3 & 3/20 & 60/60 & 1200/180 \\ \hdashline 22/3 & 3 & 3/20 & 66/60 & 1452/180 \\ \hdashline 8 & 3 & 3/20 & 72/60 & 1728/180 \\ \hdashline 26/3 & 2 & 2/20 & 52/60 & 1352/180 \\ \hdashline 28/3 & 1 & 1/20 & 28/60 & 784/180 \\ \hdashline 10 & 1 & 1/20 & 30/60 & 900/180 \\ \hdashline Total & 20 & 1 & 420/60 & 9240/180 \\ \hline \end{array}




E(Xˉ)=Xˉf(Xˉ)=42060=7E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{420}{60}=7

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.


E(Xˉ)=μxˉ=7=μE(\bar{X})=\mu_{\bar{x}}=7=\mu




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2=9240180(7)2=73=\dfrac{9240}{180}-(7)^2=\dfrac{7}{3}σXˉ=Var(Xˉ)=731.527525\sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\sqrt{\dfrac{7}{3}}\approx1.527525

Verification:


Var(Xˉ)=σ2n(NnN1)=353(3)(6361)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{35}{3(3)}(\dfrac{6-3}{6-1})=73,True=\dfrac{7}{3}, True




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS