G(t)=eλ(t−1)
We want to verify that var(x)=E(x)=λ
Now,
E(x)=G′(t=1)
First,
G′(t)=λeλ(t−1)
Setting t=1 in G′(t),
G′(t=1)=λeλ×0=λ×1=λ
Therefore, E(x)=λ
To find var(x), we first determine E(x2)−E(x)=G′′(t)
Now,
G′′(t)=λ2eλ(t−1)
Setting t=1 in G′′(t=1) we get,
G′′(t=1)=λ2e0=λ2×1=λ2
We determine the value of E(x2) as follows.
G′′(t)=E(x2)−E(x)⟹E(x2)=G′′(t)+E(x)=λ2+λ
So,
E(x2)=λ2+λ
Thus,
var(x)=E(x2)−(E(X))2var(x)=(λ2+λ)−λ2=λ
Therefore, E(x)=var(x)=λ as required.
Comments
Leave a comment