Question #287549

1. Using the table below, find the standard deviation and the variance of the scores of 30 students in Statistics exam.





Class Interval Class Frequency (f)



47 - 51 4



52 – 56 3



57 – 61 3



62 – 66 4



67 – 71 5



72 – 76 3



77 – 81 3



82 – 86 1



87 - 91 4





2. Determine the standard deviation and the variance of the scores obtained by the students in Mathematics using the table below.





Class Interval Class Frequency (f)



29 – 33 5



34 – 38 5



39 – 43 4



44 – 48 4



49 – 53 2



54 – 58 4



59 – 63 6



64 - 68 2





1
Expert's answer
2022-01-16T12:54:38-0500

1.

ClassesMifiMifiMi2fi47514941969604525654316287485761493177104436266644256163846771695345238057276743222164287781793237187238286841847056879189435631684Sum=302035142875\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & Classes & M_i & f_i & M_i\cdot f_i & M_i^2\cdot f_i \\ \hline & 47-51 & 49 & 4 & 196 & 9604 \\ \hdashline & 52-56 & 54 & 3 & 162 & 8748 \\ \hdashline & 57-61 & 49 & 3 & 177 & 10443 \\ \hdashline & 62-66 & 64 & 4 & 256 & 16384 \\ \hdashline & 67-71 & 69 & 5 & 345 & 23805 \\ \hdashline & 72-76 & 74 & 3 & 222 & 16428 \\ \hdashline & 77-81 & 79 & 3 & 237 & 18723 \\ \hdashline & 82-86 & 84 & 1 & 84 & 7056 \\ \hdashline & 87-91 & 89 & 4 & 356 & 31684 \\ \hdashline Sum= & & & 30 & 2035 & 142875 \\ \hdashline \end{array}


σ2=1N(iMi2fi1N(iMifi)2)\sigma^2=\dfrac{1}{N}\bigg(\sum _iM_i^2\cdot f_i-\dfrac{1}{N}\big(\sum_iM_i\cdot f_i\big)^2\bigg)

=130(142875130(2035)2)=\dfrac{1}{30}(142875-\dfrac{1}{30}(2035)^2)

161.1389\approx161.1389

σ=σ2=161.3888888912.6940\sigma=\sqrt{\sigma^2}=\sqrt{161.38888889}\approx12.6940

2.

ClassesMifiMifiMi2fi293331515548053438365180648039434141646724444846418484644953512102520254585642241642859636163662232664686621328712879189435631684Sum=32150775257\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & Classes & M_i & f_i & M_i\cdot f_i & M_i^2\cdot f_i \\ \hline & 29-33 & 31 & 5 & 155 & 4805 \\ \hdashline & 34-38 & 36 & 5 & 180 & 6480 \\ \hdashline & 39-43 & 41 & 4 & 164 & 6724\\ \hdashline &44-48 & 46 & 4 & 184 & 8464 \\ \hdashline & 49-53 & 51 & 2 & 102 & 5202 \\ \hdashline & 54-58 & 56 & 4 & 224 & 16428 \\ \hdashline & 59-63 & 61 & 6 & 366 & 22326 \\ \hdashline & 64-68 & 66 & 2 & 132 & 8712 \\ \hdashline & 87-91 & 89 & 4 & 356 & 31684 \\ \hdashline Sum= & & & 32 & 1507 & 75257 \\ \hdashline \end{array}


σ2=1N(iMi2fi1N(iMifi)2)\sigma^2=\dfrac{1}{N}\bigg(\sum _iM_i^2\cdot f_i-\dfrac{1}{N}\big(\sum_iM_i\cdot f_i\big)^2\bigg)

=132(75257132(1507)2)=\dfrac{1}{32}(75257-\dfrac{1}{32}(1507)^2)

=133.9599609375133.9600=133.9599609375\approx133.9600

σ=σ2=133.959960937511.5741\sigma=\sqrt{\sigma^2}=\sqrt{133.9599609375}\approx11.5741


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS