X ∼ N ( μ , σ ) μ = 68 , σ = 2.5 X\sim N(\mu,\sigma)
\\ \mu=68,\sigma=2.5 X ∼ N ( μ , σ ) μ = 68 , σ = 2.5
X ˉ ∼ N ( μ X , σ X ) μ X = μ = 68 , σ X = σ / n = 2.5 / n \bar X\sim N(\mu_X,\sigma_X)
\\ \mu_X=\mu=68,\sigma_X=\sigma/\sqrt n=2.5/\sqrt n X ˉ ∼ N ( μ X , σ X ) μ X = μ = 68 , σ X = σ / n = 2.5/ n
P ( 67 ≤ X ˉ ≤ 69 ) = 0.95 ⇒ P ( X ˉ ≤ 69 ) − P ( X ˉ ≤ 67 ) = 0.95 ⇒ P ( z ≤ 69 − 68 2.5 / n ) − P ( z ≤ 67 − 68 2.5 / n ) = 0.95 P(67\le \bar X\le 69)=0.95
\\ \Rightarrow P(\bar X\le 69)-P( \bar X\le 67)=0.95
\\ \Rightarrow P(z\le \dfrac{69-68}{2.5/\sqrt n})-P( z\le \dfrac{67-68}{2.5/\sqrt n})=0.95 P ( 67 ≤ X ˉ ≤ 69 ) = 0.95 ⇒ P ( X ˉ ≤ 69 ) − P ( X ˉ ≤ 67 ) = 0.95 ⇒ P ( z ≤ 2.5/ n 69 − 68 ) − P ( z ≤ 2.5/ n 67 − 68 ) = 0.95
⇒ P ( z ≤ n 2.5 ) − P ( z ≤ − n 2.5 ) = 0.95 ⇒ 2 P ( z ≤ n 2.5 ) − 1 = 0.95 ⇒ P ( z ≤ n 2.5 ) = 0.975 ⇒ P ( z ≥ n 2.5 ) = 0.025 ⇒ n 2.5 = 1.96 ⇒ n = 4.9 ⇒ n = 4. 9 2 = 24.01 ⇒ n = 25 \Rightarrow P(z\le \dfrac{\sqrt n}{2.5})-P( z\le \dfrac{-\sqrt n}{2.5})=0.95
\\ \Rightarrow 2P(z\le \dfrac{\sqrt n}{2.5})-1=0.95
\\ \Rightarrow P(z\le \dfrac{\sqrt n}{2.5})=0.975
\\ \Rightarrow P(z\ge \dfrac{\sqrt n}{2.5})=0.025
\\\Rightarrow \dfrac{\sqrt n}{2.5}=1.96
\\ \Rightarrow \sqrt n=4.9
\\ \Rightarrow n=4.9^2=24.01
\\ \Rightarrow n=25 ⇒ P ( z ≤ 2.5 n ) − P ( z ≤ 2.5 − n ) = 0.95 ⇒ 2 P ( z ≤ 2.5 n ) − 1 = 0.95 ⇒ P ( z ≤ 2.5 n ) = 0.975 ⇒ P ( z ≥ 2.5 n ) = 0.025 ⇒ 2.5 n = 1.96 ⇒ n = 4.9 ⇒ n = 4. 9 2 = 24.01 ⇒ n = 25
Comments