The random variable X is normally distributed with mean 68 cm and 2.5 cm. What should be the size of the sample whose
mean shall not differ from the population mean by more than 1 cm with probability 0.95? (Given that area under standard
normal curve to the right of the ordinate at 1.96 is 0.025)
"X\\sim N(\\mu,\\sigma)\n\\\\ \\mu=68,\\sigma=2.5"
"\\bar X\\sim N(\\mu_X,\\sigma_X)\n\\\\ \\mu_X=\\mu=68,\\sigma_X=\\sigma\/\\sqrt n=2.5\/\\sqrt n"
"P(67\\le \\bar X\\le 69)=0.95\n\\\\ \\Rightarrow P(\\bar X\\le 69)-P( \\bar X\\le 67)=0.95\n\\\\ \\Rightarrow P(z\\le \\dfrac{69-68}{2.5\/\\sqrt n})-P( z\\le \\dfrac{67-68}{2.5\/\\sqrt n})=0.95"
"\\Rightarrow P(z\\le \\dfrac{\\sqrt n}{2.5})-P( z\\le \\dfrac{-\\sqrt n}{2.5})=0.95\n\\\\ \\Rightarrow 2P(z\\le \\dfrac{\\sqrt n}{2.5})-1=0.95\n\\\\ \\Rightarrow P(z\\le \\dfrac{\\sqrt n}{2.5})=0.975\n\\\\ \\Rightarrow P(z\\ge \\dfrac{\\sqrt n}{2.5})=0.025\n\\\\\\Rightarrow \\dfrac{\\sqrt n}{2.5}=1.96\n\\\\ \\Rightarrow \\sqrt n=4.9\n\\\\ \\Rightarrow n=4.9^2=24.01\n\\\\ \\Rightarrow n=25"
Comments
Leave a comment