Question #283459

The random variable X is normally distributed with mean 68 cm and 2.5 cm. What should be the size of the sample whose

mean shall not differ from the population mean by more than 1 cm with probability 0.95? (Given that area under standard

normal curve to the right of the ordinate at 1.96 is 0.025)


1
Expert's answer
2021-12-29T17:06:47-0500

Solution:

XN(μ,σ)μ=68,σ=2.5X\sim N(\mu,\sigma) \\ \mu=68,\sigma=2.5

XˉN(μX,σX)μX=μ=68,σX=σ/n=2.5/n\bar X\sim N(\mu_X,\sigma_X) \\ \mu_X=\mu=68,\sigma_X=\sigma/\sqrt n=2.5/\sqrt n

P(67Xˉ69)=0.95P(Xˉ69)P(Xˉ67)=0.95P(z69682.5/n)P(z67682.5/n)=0.95P(67\le \bar X\le 69)=0.95 \\ \Rightarrow P(\bar X\le 69)-P( \bar X\le 67)=0.95 \\ \Rightarrow P(z\le \dfrac{69-68}{2.5/\sqrt n})-P( z\le \dfrac{67-68}{2.5/\sqrt n})=0.95

P(zn2.5)P(zn2.5)=0.952P(zn2.5)1=0.95P(zn2.5)=0.975P(zn2.5)=0.025n2.5=1.96n=4.9n=4.92=24.01n=25\Rightarrow P(z\le \dfrac{\sqrt n}{2.5})-P( z\le \dfrac{-\sqrt n}{2.5})=0.95 \\ \Rightarrow 2P(z\le \dfrac{\sqrt n}{2.5})-1=0.95 \\ \Rightarrow P(z\le \dfrac{\sqrt n}{2.5})=0.975 \\ \Rightarrow P(z\ge \dfrac{\sqrt n}{2.5})=0.025 \\\Rightarrow \dfrac{\sqrt n}{2.5}=1.96 \\ \Rightarrow \sqrt n=4.9 \\ \Rightarrow n=4.9^2=24.01 \\ \Rightarrow n=25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS