A bag contains three of black ball, four green balls and five red balls. Three balls are drawn
from the bag without replacement. Use a tree diagram to find the probability that the balls
are all of different colours.
The probability that the balls are all of different colours
"=P(WGR)+P(WRG)+P(GWR)+P(GRW)+P(RWG)+P(RGW)\n\\\\=\\dfrac{3}{12} \\times \\dfrac{4}{11}\\times \\dfrac{5}{10} + \\dfrac{3}{12} \\times \\dfrac{5}{11}\\times \\dfrac{4}{10} + \\dfrac{4}{12} \\times \\dfrac{3}{11}\\times \\dfrac{5}{10} + \\dfrac{4}{10} \\times \\dfrac{5}{11}\\times \\dfrac{3}{10} + \\dfrac{5}{12} \\times \\dfrac{3}{11}\\times \\dfrac{4}{10} + \\dfrac{5}{12} \\times \\dfrac{4}{11}\\times \\dfrac{3}{10}"
"=\\dfrac{60}{1320}\\times 6\n\\\\=\\dfrac3{11}"
Comments
Leave a comment