Construct the discrete series. Count unbiased estimates of the general mean and general variance. Find the confidence interval for expectation with a confidence level of 0.05 5, 11, 13, 9, 11, 5, 7, 7, 5, 9, 13, 13, 11, 9, 5, 9, 11, 9, 5, 9, 11, 9, 9, 5
Data set: (5, 11, 13, 9, 11, 5, 7, 7, 5, 9, 13, 13, 11, 9, 5, 9, 11, 9, 5, 9, 11, 9, 9, 5)
"Mean=\\frac{\\Sigma X}{n}=\\frac{5+11+13+9+11+5+7+7+5+9+13+13+11+9+5+9+11+9+5+9+11+9+9+5}{24}=8.75"
Following table shows the calculation of standard deviation:
"s=\\sqrt{\\frac{\\Sigma(X-\\bar{X})^2}{n-1}}=\\sqrt{\\frac{170.50}{24-1}}=2.72"
Formula for the 95% confidence interval is:
"CI=\\bar{X}\\pm Z\\frac{s}{\\sqrt{n}}"
"CI=8.75\\pm 1.96\\times\\frac{2.72}{\\sqrt{24}}"
"CI=8.75\\pm 1.09"
"CI=(7.66, 9.84)"
Comments
Leave a comment