Question #282668

A. A researcher is conducting an investigation on the income of the alumni of a certain university 5 years after graduation. The monthly income of 200 responds were taken and are presented in a distribution as shown below

Classes f

3, 500- 4, 999 6

5, 000- 6, 499 23

6, 500- 7, 999 36

8, 000- 9, 499 40

9, 500- 10,999 59

11,000- 12, 499 20

12, 500- 13,999 8

14, 000- 15, 499 6

15, 500- 16, 999 2


a. Range

b. Compute the value of the variance

c. Compute the value of standard deviation

B. The efficiency rating of 12 employees of a certain department were taken and are below.

81,86,68,69,78,93,81,83,71,88,95,83


Using the formula of ungrouped data compute the value of the following.

a. Range

b. Variance

C. Standard deviation



1
Expert's answer
2021-12-28T09:34:16-0500

A.

a. In the case of grouped data, the range is the difference between the upper boundary of the highest class and the lower boundary of the lowest class.


Range1=16999.53499.5=13500Range_1=16999.5-3499.5=13500

Range is also calculated by using the difference between the mid points of the highest class and the lowest class


Range2=16249.54249.5=12000Range_2=16249.5-4249.5=12000

b.

ClassesMfMfM2f350049994249.5625497108349501.5500064995749.523132238.5760305255.75650079997249.5362609821891989009800094998749.540349980306215001095001099910249.559604720.56198082764.75110001249911749.5202349902761015005125001399913249.581059961404394002140001549914749.56884971305286501.5155001699916249.5232499528092500.5\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} Classes & M & f & M\cdot f & M^2\cdot f \\ \hline 3500- 4999 & 4249.5 & 6 & 25497 &108349501.5 \\ \hdashline 5000- 6499 & 5749.5 & 23 & 132238.5 &760305255.75 \\ \hdashline 6500- 7999 & 7249.5 & 36 & 260982 &1891989009 \\ \hdashline 8000- 9499 & 8749.5 & 40 & 349980 &3062150010 \\ \hdashline 9500- 10999 & 10249.5 & 59 & 604720.5 &6198082764.75 \\ \hdashline 11000- 12499 & 11749.5 & 20 & 234990 &2761015005\\ \hdashline 12500- 13999 & 13249.5 & 8 & 105996 &1404394002 \\ \hdashline 14000-15499 & 14749.5 & 6 & 88497 &1305286501.5 \\ \hdashline 15500- 16999 & 16249.5 & 2 & 32499 & 528092500.5 \\ \end{array}

n=200n=200


mean=1ni=1nMifimean=\dfrac{1}{n}\displaystyle\sum_{i=1}^nM_if_i

=1200(25497+132238.5+260982=\dfrac{1}{200}(25497+132238.5+260982

+349980+604720.5+234990+349980+604720.5+234990

+105996+88497+32499)=9177+105996+88497+32499)=9177

The sample variable is calculated as follows:


Var(X)=s2=1n1(i=1nMi2fi1n(i=1nMifi)2)Var(X)=s^2=\dfrac{1}{n-1}(\displaystyle\sum_{i=1}^nM_i^2f_i-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nM_if_i)^2)

i=1nMi2fi=108349501.5+760305255.75\displaystyle\sum_{i=1}^nM_i^2f_i=108349501.5+760305255.75

+1891989009+3062150010+6198082764.75+1891989009+3062150010+6198082764.75

+2761015005+1404394002+1305286501.5+2761015005+1404394002+1305286501.5

+528092500.5=18019664550+528092500.5=18019664550

Var(X)=s2Var(X)=s^2

=12001(180196645501200(1835400)2)=\dfrac{1}{200-1}(18019664550-\dfrac{1}{200}(1835400)^2)

=5910546.482412=5910546.482412


c. The sample standard deviation is


s=s2=2431.161550s=\sqrt{s^2}=2431.161550

B.

a.


68,69,71,78,81,81,83,83,86,88,93,9568,69, 71,78,81,81,83,83,86,88,93,95

n=12n=12

Range=9568=27Range=95-68=27

b.

mean=xˉ=1ni=1nxi=112(68+69+71+78mean=\bar{x}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nx_i=\dfrac{1}{12}(68+69+71+78

+81+81+83+83+86+88+93+95)+81+81+83+83+86+88+93+95)

=97612=244383.3333=\dfrac{976}{12}=\dfrac{244}{3}\approx83.3333

Var(X)=s2=1n1i=1n(xixˉ)2Var(X)=s^2=\dfrac{1}{n-1}\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2

=1121((682443)2+(692443)2=\dfrac{1}{12-1}((68-\dfrac{244}{3})^2+(69-\dfrac{244}{3})^2

+(712443)2+(782443)2+(812443)2+(71-\dfrac{244}{3})^2+(78-\dfrac{244}{3})^2+(81-\dfrac{244}{3})^2

+(812443)2+(832443)2+(832443)2+(81-\dfrac{244}{3})^2+(83-\dfrac{244}{3})^2+(83-\dfrac{244}{3})^2

+(862443)2+(882443)2+(932443)2+(86-\dfrac{244}{3})^2+(88-\dfrac{244}{3})^2+(93-\dfrac{244}{3})^2

+(952443)2)=25283376.606061+(95-\dfrac{244}{3})^2)=\dfrac{2528}{33}\approx76.606061

c.


s=s2=2528338.7525s=\sqrt{s^2}=\sqrt{\dfrac{2528}{33}}\approx8.7525

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS