14.
"n=700"
"mean=\\bar{x}=\\dfrac{\\sum _if_ix_i}{n}=\\dfrac{18960}{700}=27.0857""\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n Class & f_i & Mid\\ value & f_ix_i & |x_i-\\bar{x}| & |x_i-\\bar{x}|f_i\\\\\n& & x_i & & & & \\\\ \\hline\n 20-22 & 70 & 21 & 1470 & 6.0857 & 426 \\\\ \\hdashline\n 22-24 & 90 & 23 & 2070 & 4.0857 & 367.7143 \\\\ \\hdashline\n 24-26 & 110 & 25 & 2750 & 2.0857 & 229.4286 \\\\ \\hdashline\n 26-28 & 140 & 27 & 3780 & 0.0857 & 12 \\\\ \\hdashline\n 28-30 & 130 & 29 & 4030 & 1.9143 & 248.8571 \\\\ \\hdashline\n 30-32 & 80 & 31 & 2640 & 3.9143 & 313.1429 \\\\ \\hdashline\n 32-34 & 80 & 33 & 2800 & 5.9143 & 473.1429 \\\\ \\hdashline\n & 700 & & 18960 & & 2070.2857 \\\\ \\hdashline\n\\end{array}" Mean deviation of Mean
"\\delta \\bar{x}=\\dfrac{\\sum _if_i|x_i-\\bar{x}|}{n}=\\dfrac{2070.2857}{700}=2.9576" Coefficient of Mean deviation
"\\dfrac{\\delta \\bar{x}}{\\bar{x}}=\\dfrac{2.9576}{27.0857}=0.1092"
"median=M"
"=\\text{value of } (\\dfrac{n}{2})^{th}\\text{ observation}"
"=\\text{value of } (350)^{th}\\text{ observation}"The median class is "26-28."
"L=" lower boundary point of median class "=26"
"n=" Total frequency "=700"
"cf=" Cumulative frequency of the class preceding the median class "=270"
"f=" Frequency of the median class "=140"
"c=" class length of median class "=2"
Median
"M=L+\\dfrac{\\dfrac{n}{2}-cf}{f}\\cdot c=26+\\dfrac{\\dfrac{700}{2}-270}{140}\\cdot 2"
"=27.1429"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n Class & f_i & Mid\\ value & cf & |x_i-M| & |x_i-M|f_i\\\\\n& & x_i & & & & \\\\ \\hline\n 20-22 & 70 & 21 & 70 & 6.1429 & 430 \\\\ \\hdashline\n 22-24 & 90 & 23 & 160 & 4.1429& 372.8571 \\\\ \\hdashline\n 24-26 & 110 & 25 & 270 & 2.1429 & 235.7143 \\\\ \\hdashline\n 26-28 & 140 & 27 & 410 & 0.1429 & 20 \\\\ \\hdashline\n 28-30 & 130 & 29 & 540 & 1.8571 & 241.4286 \\\\ \\hdashline\n 30-32 & 80 & 31 & 620 & 3.8571 & 308.5714 \\\\ \\hdashline\n 32-34 & 80 & 33 & 700 & 5.8571& 468.5714 \\\\ \\hdashline\n & 700 & & & & 2077.1429 \\\\ \\hdashline\n\\end{array}" Mean deviation of Median
"\\delta \\bar{x}=\\dfrac{\\sum _if_i|x_i-M|}{n}=\\dfrac{2077.1429}{700}=2.9673" Coefficient of Mean deviation
"\\dfrac{\\delta \\bar{x}}{\\bar{x}}=\\dfrac{2.9673}{27.1429}=0.1093"
15.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n Class & f_i & Mid\\ value & |x_i-Z| & |x_i-Z|f_i\\\\\n& & x_i & & & \\\\ \\hline\n 14-18 & 5 & 16 & 8 & 40 \\\\ \\hdashline\n18-22 & 12 & 20 & 4 & 48 \\\\ \\hdashline\n 22-26 & 14 & 24 & 0 & 0 \\\\ \\hdashline\n 26-30 & 12 & 28 & 4 & 48 \\\\ \\hdashline\n 30-34 & 7 & 32 & 8 & 56 \\\\ \\hdashline\n & 50 & & & 192 \\\\ \\hdashline\n\\end{array}"
To find Mode Class
Here, maximum frequency is "14."
The mode class is "22-26."
"L=" lower boundary point of mode class "=22"
"f_1=" frequency of the mode class "=14"
"f_0=" frequency of the preceding class "=12"
"f_2=" frequency of the succedding class "=12"
"c=" class length of mode class "=4"
"Z=L+(\\dfrac{f_1-f_0}{2f_1-f_0-f_2})\\cdot c"
"=22+(\\dfrac{14-12}{2(14)-12-12})\\cdot 4=24"
Mean deviation of Mode
"\\delta \\bar{x}=\\dfrac{\\sum _if_i|x_i-Z|}{n}=\\dfrac{192}{50}=3.84" Coefficient of Mean deviation
"\\dfrac{\\delta \\bar{x}}{\\bar{x}}=\\dfrac{3.84}{24}=0.16"
Comments
Leave a comment