(a):
XiββΌG(1,1/Ξ±) are iid for all i=1,..,n
fxiββ(xiβ)=Ξ±βxiβΞ±;xiβ>0f(Xβ)=Ξ i=1nβfxiββ(xiβ)=Ξ±neβΞ£xiβΞ±iβ=A(Ξ±)h(xβ)eΞ·(Ξ±)T(xβ)A(Ξ±)=Ξ±n,h(xβ)=1,Ξ·(Ξ±)=βΞ±,Tβ²(xβ)=Ξ£xiβ
β΄f(Xβ) is from exponential family.
Now, Ξ£xiββΌG(n,1/Ξ±)
β΄E(Ξ£xiβ1β)=β«0ββt1β.Ξ(n)Ξ±ntnβ1eβtΞ±βdt=Ξ(n)Ξ(nβ1)βΞ±=nβ1Ξ±ββ΄E(nXΛnβ1β)=Ξ±
So, T(Xβ)=nXΛnβ1β is unbiased for Ξ±.
β΄E(T(Xβ)β£Tβ²(Xβ)=Ξ£xiβ) is UMVUE from Lehmann Scheffe theorem.
β΄T(Xβ)=nXΛnβ1β is UMVUE for Ξ±.
β΄E((Ξ£xiβ)21β)=β«0ββt21β.Ξ(n)Ξ±ntnβ1eβtΞ±βdt=Ξ(n)Ξ(nβ2)βΞ±2=(nβ1)(nβ2)Ξ±2β
V(nXΛnβ1β)=(nβ1)2V((Ξ£xiβ)21β)=(nβ1)2[E((Ξ£xiβ)21β)βE2(Ξ£xiβ1β)]=(nβ1)2[(nβ1)(nβ2)Ξ±2ββ(nβ1)2Ξ±2β]=nβ1Ξ±2β
(b):
fXβ(x)=Ξ±eβΞ±x;x>0 & g(ΞΈ)=Ξ±βgβ²(ΞΈ)=1L(fXβ(x))=Ξ±neβΞ±Ξ£xiβlogL(fXβ(x))=nlogΞ±βΞ±Ξ£xiββΞ±ββlogL(fXβ(x))=Ξ±nββΞ£xiββΞ±2β2βlogL(fXβ(x))=Ξ±2βnβI(ΞΈ)=βE[βΞ±2β2βlogL(fXβ(x))]=βE[Ξ±2βnβ]=Ξ±2nβ
And CR inequality =CR=I(ΞΈ)[gβ²(ΞΈ)]2β
Here gβ²(ΞΈ)=1
So, CR=Ξ±2nβ1β=nΞ±2β
Hence, proved.
Comments