Question #280366

 Let 𝑋1, … , 𝑋𝑛 be a random sample from the Bernoulli distribution, 

say P[X=1] = ΞΈ=1-P[X=0]. (a) Find the CRLB for the variance of unbiased estimators of 

ΞΈ(1-ΞΈ). (b) Find the UMVUE of ΞΈ(1-ΞΈ) if such exists.


1
Expert's answer
2021-12-20T18:53:04-0500

a)a)

For a Bernoulli random variable,

f(x,ΞΈ)=ΞΈx(1βˆ’ΞΈ)1βˆ’x, x=0,1f(x,\theta)=\theta^x(1-\theta)^{1-x},\space x=0,1

To find the CRLB, we proceed as follows.

lnf(x,ΞΈ)=ln(ΞΈx(1βˆ’ΞΈ)1βˆ’x)=xlnΞΈ+(1βˆ’x)ln(1βˆ’ΞΈ)lnf(x,\theta)=ln(\theta^x(1-\theta)^{1-x})=xln\theta+(1-x)ln(1-\theta)

δδθ(lnf(x,ΞΈ))=xΞΈβˆ’(1βˆ’x)(1βˆ’ΞΈ){\delta\over \delta\theta}(lnf(x,\theta))={x\over\theta}-{(1-x)\over (1-\theta)}

E(δδθ(lnf(x,ΞΈ)))2=E(xΞΈβˆ’(1βˆ’x)(1βˆ’ΞΈ))2=1(ΞΈ(1βˆ’ΞΈ))2E(xβˆ’ΞΈ)2=1ΞΈ(1βˆ’ΞΈ)E({\delta\over \delta\theta}(lnf(x,\theta)))^2=E({x\over\theta}-{(1-x)\over (1-\theta)})^2={1\over(\theta(1-\theta))^2}E(x-\theta)^2={1\over\theta(1-\theta)}

Now,

T(ΞΈ)=ΞΈ(1βˆ’ΞΈ)\Tau(\theta)=\theta(1-\theta)and Tβ€²(ΞΈ)=1βˆ’2ΞΈ\Tau'(\theta)=1-2\theta

Therefore,

var(T(ΞΈ))=var(ΞΈ(1βˆ’ΞΈ))=(Tβ€²(ΞΈ))2nΓ—E(δδθ(lnf(x,ΞΈ)))2=(1βˆ’2ΞΈ)2nΓ—1(ΞΈ(1βˆ’ΞΈ))=(1βˆ’2ΞΈ)2Γ—ΞΈ(1βˆ’ΞΈ)n=ΞΈn(1βˆ’5ΞΈ+8ΞΈ2βˆ’4ΞΈ3)var(\Tau(\theta))=var(\theta(1-\theta))={(\Tau'(\theta))^2\over n\times E({\delta\over \delta\theta}(lnf(x,\theta)))^2 }={(1-2\theta)^2\over n\times{1\over(\theta(1-\theta))}}={(1-2\theta)^2\times \theta(1-\theta)\over n}={\theta\over n}(1-5\theta+8\theta^2-4\theta^3)

Thus, the CRLB is given by,

var(ΞΈ(1βˆ’ΞΈ))β‰₯ΞΈn(1βˆ’5ΞΈ+8ΞΈ2βˆ’4ΞΈ3)var(\theta(1-\theta))\ge{\theta\over n}(1-5\theta+8\theta^2-4\theta^3)


b)b)

Let T=X1+X2+...+XnT=X_1+X_2+...+X_n. Therefore, T=X1+X2+...+XnT=X_1+X_2+...+X_n is a complete sufficient statistic . By the Lehmann-Scheffe theorem, if we can find a function of TT whose expectation is ΞΈ(1βˆ’ΞΈ)\theta(1-\theta), it is an UMVUE.

In any set up, the sample variance 1(nβˆ’1)βˆ‘(Xiβˆ’XΛ‰)2{1\over(n-1)}\sum(X_i-\bar{X})^2, is an unbiased estimate of the variance. Since X2=XX^2=X for Bernoulli random variables,

1(nβˆ’1)βˆ‘(Xiβˆ’XΛ‰)2=1(nβˆ’1)(βˆ‘Xi2βˆ’nXΛ‰2){1\over(n-1)}\sum(X_i-\bar{X})^2={1\over(n-1)}(\sum X_i^2-n\bar{X}^2)


=1(nβˆ’1)(βˆ‘Xiβˆ’nXΛ‰2)={1\over(n-1)}(\sum X_i-n\bar{X}^2)


=T(nβˆ’T)n(nβˆ’1)={T(n-T)\over n(n-1)}

Hence, T(nβˆ’T)n(nβˆ’1){T(n-T)\over n(n-1)} is an UMVUE for the variance, ΞΈ(1βˆ’ΞΈ)\theta(1-\theta)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS