a)
For a Bernoulli random variable,
f(x,ΞΈ)=ΞΈx(1βΞΈ)1βx, x=0,1
To find the CRLB, we proceed as follows.
lnf(x,ΞΈ)=ln(ΞΈx(1βΞΈ)1βx)=xlnΞΈ+(1βx)ln(1βΞΈ)
δθδβ(lnf(x,ΞΈ))=ΞΈxββ(1βΞΈ)(1βx)β
E(δθδβ(lnf(x,ΞΈ)))2=E(ΞΈxββ(1βΞΈ)(1βx)β)2=(ΞΈ(1βΞΈ))21βE(xβΞΈ)2=ΞΈ(1βΞΈ)1β
Now,
T(ΞΈ)=ΞΈ(1βΞΈ)and Tβ²(ΞΈ)=1β2ΞΈ
Therefore,
var(T(ΞΈ))=var(ΞΈ(1βΞΈ))=nΓE(δθδβ(lnf(x,ΞΈ)))2(Tβ²(ΞΈ))2β=nΓ(ΞΈ(1βΞΈ))1β(1β2ΞΈ)2β=n(1β2ΞΈ)2ΓΞΈ(1βΞΈ)β=nΞΈβ(1β5ΞΈ+8ΞΈ2β4ΞΈ3)
Thus, the CRLB is given by,
var(ΞΈ(1βΞΈ))β₯nΞΈβ(1β5ΞΈ+8ΞΈ2β4ΞΈ3)
b)
Let T=X1β+X2β+...+Xnβ. Therefore, T=X1β+X2β+...+Xnβ is a complete sufficient statistic . By the Lehmann-Scheffe theorem, if we can find a function of T whose expectation is ΞΈ(1βΞΈ), it is an UMVUE.
In any set up, the sample variance (nβ1)1ββ(XiββXΛ)2, is an unbiased estimate of the variance. Since X2=X for Bernoulli random variables,
(nβ1)1ββ(XiββXΛ)2=(nβ1)1β(βXi2ββnXΛ2)
=(nβ1)1β(βXiββnXΛ2)
=n(nβ1)T(nβT)β
Hence, n(nβ1)T(nβT)β is an UMVUE for the variance, ΞΈ(1βΞΈ)
Comments