Find the mean, sample standard deviation, quartiles, box and whisker plot, and stem and leaf diagram, of the following body temperature (°F)
97.1 97.8 98.0 98.9 99.5 96.3
98.4 98.5 98.1 100.8 98.6 98.2
99.0 99.3 98.8 97.6 97.4 99.0
97.4 96.4 98.0 98.1 97.8 98.5
98.7 98.8 98.2 97.6 98.2 98.8
1.
Mean "=\\frac{97.1+97.8+98.0+98.9+99.5+96.3}{6}=97.93"
Standard deviation = "\\sqrt{\\frac{\\sum(x-\\bar x)^2}{n-1}}"
From the given data, the standard deviation is:
"S=1.16"
The data: 96.3, 97.1, 97.8, 98.0, 98.9, 99.5
First Quartile(Q1) "=((n+1)\/4)^{th}" term "=7\/4=1^{st}\\hspace{3pt}term=96.9"
Second Quartile(Q2)"==((n+1)\/2)^{th}\\hspace{3pt} term=97.9"
Third Quartile(Q3) "=(3(n+1)\/4)^{th}\\hspace{3pt}term=99.05"
Box and Whisker Plot:
Stem and Leaf Diagram:
2.
Mean "=\\frac{98.4+98.5+98.1+100.8+98.6+98.2}{6}=98.77"
Standard deviation = "\\sqrt{\\frac{\\sum(x-\\bar x)^2}{n-1}}"
From the given data, the standard deviation is:
"S=1.01"
The data: 98.1,98.2,98.4,98.5,98.6,100.8
First Quartile(Q1) "=((n+1)\/4)^{th}" term "=7\/4=1^{st}\\hspace{3pt}term=98.175"
Second Quartile(Q2)"==((n+1)\/2)^{th}\\hspace{3pt} term=98.45"
Third Quartile(Q3) "=(3(n+1)\/4)^{th}\\hspace{3pt}term=99.15"
Box and Whisker Plot:
Stem and Leaf Diagram:
3.
Mean "=98.52"
Standard deviation = "\\sqrt{\\frac{\\sum(x-\\bar x)^2}{n-1}}"
From the given data, the standard deviation is:
"S=0.81"
The data: 97.4,97.6,98.8,99.0,99.0,99.3
First Quartile(Q1) "=((n+1)\/4)^{th}" term "=7\/4=1^{st}\\hspace{3pt}term=97.55"
Second Quartile(Q2)"==((n+1)\/2)^{th}\\hspace{3pt} term=98.9"
Third Quartile(Q3) "=(3(n+1)\/4)^{th}\\hspace{3pt}term=99.075"
Box and Whisker Plot:
Stem and Leaf Diagram:
4.
Mean "=97.7"
Standard deviation = "\\sqrt{\\frac{\\sum(x-\\bar x)^2}{n-1}}"
From the given data, the standard deviation is:
"S=0.73"
The data: 96.4,97.4,97.8,98.0,98.1,98.5
First Quartile(Q1) "=((n+1)\/4)^{th}" term "=7\/4=1^{st}\\hspace{3pt}term=97.15"
Second Quartile(Q2)"==((n+1)\/2)^{th}\\hspace{3pt} term=97.9"
Third Quartile(Q3) "=(3(n+1)\/4)^{th}\\hspace{3pt}term=98.2"
Box and Whisker Plot:
Stem and Leaf Diagram:
5.
Mean "=98.38"
Standard deviation = "\\sqrt{\\frac{\\sum(x-\\bar x)^2}{n-1}}"
From the given data, the standard deviation is:
"S=0.47"
The data: 97.6,98.2,98.2,98.7,98.8,98.8
First Quartile(Q1) "=((n+1)\/4)^{th}" term "=7\/4=1^{st}\\hspace{3pt}term=98.05"
Second Quartile(Q2)"==((n+1)\/2)^{th}\\hspace{3pt} term=98.45"
Third Quartile(Q3) "=(3(n+1)\/4)^{th}\\hspace{3pt}term=98.8"
Box and Whisker Plot:
Stem and Leaf Diagram:
Comments
Leave a comment