Question #277707

Find the mean, sample standard deviation, quartiles, box and whisker plot, and stem and leaf diagram, of the following body temperature (°F)




97.1 97.8 98.0 98.9 99.5 96.3




98.4 98.5 98.1 100.8 98.6 98.2




99.0 99.3 98.8 97.6 97.4 99.0




97.4 96.4 98.0 98.1 97.8 98.5




98.7 98.8 98.2 97.6 98.2 98.8


1
Expert's answer
2021-12-12T17:40:42-0500

1.

Mean =97.1+97.8+98.0+98.9+99.5+96.36=97.93=\frac{97.1+97.8+98.0+98.9+99.5+96.3}{6}=97.93

Standard deviation = (xxˉ)2n1\sqrt{\frac{\sum(x-\bar x)^2}{n-1}}

From the given data, the standard deviation is:

S=1.16S=1.16

The data: 96.3, 97.1, 97.8, 98.0, 98.9, 99.5

First Quartile(Q1) =((n+1)/4)th=((n+1)/4)^{th} term =7/4=1stterm=96.9=7/4=1^{st}\hspace{3pt}term=96.9

Second Quartile(Q2)==((n+1)/2)thterm=97.9==((n+1)/2)^{th}\hspace{3pt} term=97.9

Third Quartile(Q3) =(3(n+1)/4)thterm=99.05=(3(n+1)/4)^{th}\hspace{3pt}term=99.05

Box and Whisker Plot:



Stem and Leaf Diagram:





2.

Mean =98.4+98.5+98.1+100.8+98.6+98.26=98.77=\frac{98.4+98.5+98.1+100.8+98.6+98.2}{6}=98.77

Standard deviation = (xxˉ)2n1\sqrt{\frac{\sum(x-\bar x)^2}{n-1}}

From the given data, the standard deviation is:

S=1.01S=1.01

The data: 98.1,98.2,98.4,98.5,98.6,100.8

First Quartile(Q1) =((n+1)/4)th=((n+1)/4)^{th} term =7/4=1stterm=98.175=7/4=1^{st}\hspace{3pt}term=98.175

Second Quartile(Q2)==((n+1)/2)thterm=98.45==((n+1)/2)^{th}\hspace{3pt} term=98.45

Third Quartile(Q3) =(3(n+1)/4)thterm=99.15=(3(n+1)/4)^{th}\hspace{3pt}term=99.15

Box and Whisker Plot:



Stem and Leaf Diagram:




3.

Mean =98.52=98.52

Standard deviation = (xxˉ)2n1\sqrt{\frac{\sum(x-\bar x)^2}{n-1}}

From the given data, the standard deviation is:

S=0.81S=0.81

The data: 97.4,97.6,98.8,99.0,99.0,99.3

First Quartile(Q1) =((n+1)/4)th=((n+1)/4)^{th} term =7/4=1stterm=97.55=7/4=1^{st}\hspace{3pt}term=97.55

Second Quartile(Q2)==((n+1)/2)thterm=98.9==((n+1)/2)^{th}\hspace{3pt} term=98.9

Third Quartile(Q3) =(3(n+1)/4)thterm=99.075=(3(n+1)/4)^{th}\hspace{3pt}term=99.075

Box and Whisker Plot:



Stem and Leaf Diagram:




4.

Mean =97.7=97.7

Standard deviation = (xxˉ)2n1\sqrt{\frac{\sum(x-\bar x)^2}{n-1}}

From the given data, the standard deviation is:

S=0.73S=0.73

The data: 96.4,97.4,97.8,98.0,98.1,98.5

First Quartile(Q1) =((n+1)/4)th=((n+1)/4)^{th} term =7/4=1stterm=97.15=7/4=1^{st}\hspace{3pt}term=97.15

Second Quartile(Q2)==((n+1)/2)thterm=97.9==((n+1)/2)^{th}\hspace{3pt} term=97.9

Third Quartile(Q3) =(3(n+1)/4)thterm=98.2=(3(n+1)/4)^{th}\hspace{3pt}term=98.2

Box and Whisker Plot:



Stem and Leaf Diagram:




5.

Mean =98.38=98.38

Standard deviation = (xxˉ)2n1\sqrt{\frac{\sum(x-\bar x)^2}{n-1}}

From the given data, the standard deviation is:

S=0.47S=0.47

The data: 97.6,98.2,98.2,98.7,98.8,98.8

First Quartile(Q1) =((n+1)/4)th=((n+1)/4)^{th} term =7/4=1stterm=98.05=7/4=1^{st}\hspace{3pt}term=98.05

Second Quartile(Q2)==((n+1)/2)thterm=98.45==((n+1)/2)^{th}\hspace{3pt} term=98.45

Third Quartile(Q3) =(3(n+1)/4)thterm=98.8=(3(n+1)/4)^{th}\hspace{3pt}term=98.8

Box and Whisker Plot:




Stem and Leaf Diagram:


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS