A random variable x has the cumulative distribution function given as
f(x) = 8>x<7
0; for x<1
X^2 -2x+2
2; for 1≤x2
1; for x≥2
Calculate the variance of x.
"f(x)= \\begin{cases}\n 2x-2 &1\\leq x\\leq2 \\\\\n 0 & otherwise\n\\end{cases}"
Check
"=[x^2-2x]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}=4-4-(1-2)=1"
"E(X)=\\displaystyle\\int_{-\\infin}^{\\infin}xf(x)dx=\\displaystyle\\int_{1}^{2}x(2x-2)dx"
"=[\\dfrac{2x^3}{3}-x^2]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}=\\dfrac{16}{3}-4-(\\dfrac{2}{3}-1)=\\dfrac{5}{3}"
"E(X^2)=\\displaystyle\\int_{-\\infin}^{\\infin}x^2f(x)dx=\\displaystyle\\int_{1}^{2}x^2(2x-2)dx"
"=[\\dfrac{x^4}{2}-\\dfrac{2x^3}{3}]\\begin{matrix}\n 2 \\\\\n 1\n\\end{matrix}=8-\\dfrac{16}{3}-(\\dfrac{1}{2}-\\dfrac{2}{3})=\\dfrac{17}{6}"
"Var(X)=E(X^2)-[E(X)]^2"
"=\\dfrac{17}{6}-[\\dfrac{5}{3}]^2=\\dfrac{1}{18}"
Comments
Leave a comment